Numerical optimization of Neumann eigenvalues of domains in the sphere - Université Savoie Mont Blanc
Article Dans Une Revue Journal of Computational Physics Année : 2023

Numerical optimization of Neumann eigenvalues of domains in the sphere

Résumé

This paper deals with the numerical optimization of the first three eigenvalues of the Laplace-Beltrami operator of domain in the Euclidean sphere in $\mathbb{R}^3$ with Neumann boundary conditions. We address two approaches : the first one is a generalization of the initial problem leading to a density method and the other one is a shape optimization procedure via the level-set method. The original goal of those method was to investigate the conjecture according to which the geodesic ball were optimal for the first non-trivial eigenvalue under certain conditions. These computations give some strong insight on the optimal shapes of those eigenvalue problems and show a rich variety of shapes regarding the proportion of the surface area of the sphere occupied by the domain. In a last part, the same algorithms are used to carry the same survey on a torus.
Fichier principal
Vignette du fichier
main.pdf (8.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04038780 , version 1 (21-03-2023)

Identifiants

Citer

Eloi Martinet. Numerical optimization of Neumann eigenvalues of domains in the sphere. Journal of Computational Physics, 2023, 508, pp.113002. ⟨10.1016/j.jcp.2024.113002⟩. ⟨hal-04038780⟩
62 Consultations
58 Téléchargements

Altmetric

Partager

More