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NUMERICAL OPTIMIZATION OF NEUMANN EIGENVALUES OF
DOMAINS IN THE SPHERE

ELOI MARTINET

Abstract. This paper deals with the numerical optimization of the first three eigen-
values of the Laplace-Beltrami operator of domain in the Euclidean sphere in R3 with
Neumann boundary conditions. We address two approaches : the first one is a general-
ization of the initial problem leading to a density method and the other one is a shape
optimization procedure via the level-set method. The original goal of those method
was to investigate the conjecture according to which the geodesic ball were optimal for
the first non-trivial eigenvalue under certain conditions. These computations give some
strong insight on the optimal shapes of those eigenvalue problems and show a rich va-
riety of shapes regarding the proportion of the surface area of the sphere occupied by
the domain. In a last part, the same algorithms are used to carry the same survey on a
torus.

1. Introduction

Let n ≥ 1. The problem we consider in the first part of this paper involves the spectrum
of the Laplace operator on domain in the unit sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1}. Let
Ω ⊂ Sn be an open, bounded and Lipschitz set. The spectral theorem assures that the
problem {

−∆u = µk(Ω)u in Ω,
∂u
∂ν = 0 on ∂Ω,

with u ∈ H1(Ω) \ {0} has a sequence of eigenvalues

0 = µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ ...→ +∞.

The corresponding eigenfunctions satisfy the well-known variational formula

(1) µk(Ω) = min
V ∈Vk+1

max
u∈V \{0}

´
Ω |∇u|

2´
Ω u

2 ,

where Vk is the family of subspaces of dimension k in H1(Ω). We are interested in the
following problem : for m > 0 and k ∈ N, solve

(2) sup{µk(Ω) : Ω ⊂ Sn, |Ω| = m,Ω bounded, open and Lipschitz}.

The aim of this paper will be to study this optimization problem from a numerical point
of view.

While the numerical shape optimization of Neumann eigenvalues of domains in the
Euclidian space have drawn a lot of attention in the past years (see for instance [6] [5] [4]
[10]), the litterature on the optimization of those eigenvalues for domains in curved spaces
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2 E. MARTINET

is sparse. The present work will address this problem by considering the optimization of
several Neumann eigenvalues of domains in the sphere Sn as well as on a torus.

Old and recent theoretical works have been conducted to prove the optimality of the
spherical cap for domain in the sphere for the first Neumann eigenvalue, either by assuming
simple connectedness of the optimal domain [8] [17] or, following the seminal work of
Weinberger [21], using the so-called "mass transplantation technique". However all these
results require some restriction on the domain : for instance, to lie on the hemisphere [7]
or to lie outside of some spherical cap [9].

In this work, we will provide some numerical evidence of properties of the optimal
domain in the sphere. Especially, we will see that some density-based method strongly
suggest that the problem of the optimization of the first Neumann eigenvalue on domains
can not be tackled by mass transplantation arguments for domains and densities of masses
large enough. Moreover, we will see how the numerical study of the second non-trivial
Neumann eigenvalue suggests that the optimal shape is two disjoint geodesic balls [9]. We
will also numerically witness the rich variety of optimal shapes for the third non-trivial
eigenvalue. In a last part we will consider the same questions on a torus.

As it has already been said, one of the numerical method will rely on some relaxation of
the original problem by extending the relation (1) to the class of densities ρ ∈ L∞(Sn, [0, 1])
in the following way

(3) µk(ρ) := inf
V ∈Vk+1

max
u∈V \{0}

´
Sn ρ|∇u|

2´
Sn ρu

2 ,

where Vk+1 is the family of subspaces of dimension k + 1 in
(4) {u · 1{ρ(x)>0} : u ∈ C∞c (Sn)}.

This relaxation, which has already been extensively used in [10], can also be found in
greater generality in [11].

The original problem will then be replaced by

(5) sup
{
µk(ρ) : ρ : Sn → [0, 1],

ˆ
Sn
ρ = m

}
.

which well-posedness is established below.
This formulation allows to perform some classical optimization methods such as gradient

descent over the variable ρ instead of considering difficult shape optimization problem
involving changes of topology. However, the density method is strictly more general than
the problem (2) in the sense that optimal density may not correspond to characteristic
functions of domains. This led to an implementation of a shape optimization method,
namely the level set method, which solves directly the problem (2) with possible changes
in topology.

In the next sections, we first see the theoretical aspects brought by the relaxation (3).
Then we discuss the practical implementation of the two methods cited above and provide
numerical results related to the first three eigenvalues. We also address some possible
consequences these computations have at a theoretical level.

2. Existence and approximation of the optimal density

We start by setting a theoretical framework which makes problem (5) well-posed. The
results follows using the same ideas as in [10]. For this reason, we shall not enter too much
in the details.
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A natural question that directly arises is the one of the existence of an optimal density.
In the Euclidian case Rn, we had to rely on some concentration-compactness result to
obtain the existence of some collection of densities. Here the fact that the sphere has
finite measure allows us to give a complete existence result easily :

Theorem 1 (Existence of an optimal density). Let 0 ≤ m ≤ |Sn|. Then problem (5) has
a solution.

Proof. We actually prove the upper-semicontinuity of the eigenvalues with respect to the
weak-* convergence. Let k ∈ N and ρ, (ρn)n∈N ∈ L1(Sn, [0, 1]) be functions such that
ρn ⇀ ρ. Let ε > 0 and V = span{v01{ρ>0}, ..., vk1{ρ>0}} be such that

µk(ρ) ≥ max
u∈V \{0}

´
Sn ρ|∇u|

2´
Sn ρu

2 − ε.

Let us consider Vn =< v01{ρn>0}, ..., vk1{ρn>0} > and un =
∑k
i=0 α

n
i vi a maximizing

sequence in

max
u∈Vn\{0}

´
Sn ρn|∇u|

2´
Sn ρnu

2 .

For n large enough, Vn is of dimension k + 1 hence

µk(ρn) ≤
´
Sn ρn|∇un|

2´
Sn ρnu

2
n

.

Note that we can suppose by homogeneity that
∑k
i=0(αni )2 = 1 for all n. Up to a

subsequence, we get that αni → αi ∈ R for all i. By putting ṽ =
∑k
i=0 αivi we get thatˆ

Sn
ρn|∇un|2 →

ˆ
Sn
ρ|∇ṽ|2

and ˆ
Sn
ρnu

2
n →

ˆ
Sn
ρṽ2.

Thus
µk(ρ) ≥ lim sup

n→+∞
µk(ρn)− ε.

This relation being valid for all ε, we get
µk(ρ) ≥ lim sup

n→+∞
µk(ρn).

Now let (ρn)n∈N be some maximizing sequence of the problem (5). There exists a
ρ ∈ L1(Sn, [0, 1]) such that up to a subsequence, ρn ⇀ ρ weakly. By upper-semicontinuity,
we get that µk(ρ) ≥ lim supn→+∞ µk(ρn) and the fact that 1 ∈ L1(Sn,R) ensure that the
condition

´
Sn ρn = m is satisfied at the limit. �

From a numerical point of view, computing the generalized eigenvalue via finite element
method is not possible in general due to the potential vanishing of ρ on some non-negligible
parts of Sn. It is possible to approximate our generalized eigenvalues by well-defined ones
of non-zero densities :

Theorem 2 (Approximation). Let ρ ∈ L1(Sn, [0, 1]) ,
´
Sn ρ = m > 0. We introduce the

following quantity :

µεk(ρ) := min
V ∈Vk+1

max
u∈V \{0}

´
Sn(ρ+ ε)|∇u|2´
Sn(ρ+ ε2)u2
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where Vk+1 is the family of subspace of dimension k + 1 in H1(Sn).
Then :

µεk(ρ) −−→
ε→0

µk(ρ).

For the proof in the Euclidian case, we refer to [10, Lemma 14].

Remark 3. µεk(ρ) is the k-th non-trivial eigenvalue of the well posed elliptic problem

−div[(ρ+ ε)∇u] = µεk(ρ)(ρ+ ε2)u

on Sn.

Proof. The proof decomposes into proving both the limsup and the liminf. The limsup is
proven in the same way as in previous theorem; let us focus on the liminf.

Let uε0, ..., uεk ∈ H1(Sn) be the eigenfunctions associated to the eigenvalues µε0, ..., µεk,
orthogonal and normalized in the sense that

(6)
ˆ
Sn

(ρ+ ε2)uεiuεj = δi,j .

This implies that

(7)
ˆ
Sn

(ρ+ ε)|∇uεi |2 = µεi(ρ)

and this quantity can be considered bounded independently of i and ε by some bound
M. If not, the limsup would be infinite and the previous case would allow us to conclude.
From equation 6 we deduce that (εuεi)ε is bounded in L2(Sn) for all i. Hence we can find a
subsequence such that for all 0 ≤ i ≤ k, the sequence (εuεi) converges weakly in L2(Sn) to
some function gi. Denoting v̄ = 1

|Sn|
´
Sn v, we get εū

ε
i −→ ḡi for all i, the constant function

1 being in L2. Moreover, the sequence (
√
ε∇uεi)ε is bounded in L2(Sn) hence by we get by

the Poincaré-Wirtinger inequality :

‖εuεi − εūεi‖L2 ≤ C‖ε∇uεi‖L2 −→ 0.

We deduce that εuεi −→ ḡi strongly in L2. We can then conclude that ḡi = 0 by noticing
that

0 = lim
ε→0

ε2
ˆ
Sn
ρ(uεi)2 =

ˆ
Sn
ρḡi

2 = ḡi
2m.

By Cauchy-Schwarz inequality, this implies that
´
Sn u

ε
iu
ε
j −→ 0 which in turn results in´

Sn ε
2(vε)2dx −→ 0 for all vε ∈ span{uε0, ..., uεk}. Using this last limit and the fact that

span{uε01{ρ>0}, ..., u
ε
k1{ρ>0}} is of dimension k + 1 for ε small enough we finally get

µk(ρ) = inf
V ∈Vρ

k+1

max
u∈V \{0}

´
Sn ρ|∇u|

2´
Sn ρu

2 ≤ lim inf
ε→0

max
v∈span{uε0,...,uεk}

´
Sn(ρ+ ε)|∇u|2´
Sn(ρ+ ε2)u2 = lim inf

ε→0
µεk(ρ)

which concludes the proof. �

Theorem 4 (Approximation of maxima). Let 0 < m ≤ |Sn|. Then

(8) max
‖ρ‖L1=m

µεk(ρ) = max
‖ρ‖L1=m

µk(ρ).
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Proof. Let (ρε)ε be such that µεk(ρε) = max
‖ρ‖L1=m

µεk(ρ) and ρ∗ be such that µk(ρ∗) =

max
‖ρ‖L1=m

µk(ρ). In the same way than the upper semicontinuity in theorem 1, we have

that
lim sup
ε−→0

µεk(ρε) ≤ µk(ρ̃) < max
‖ρ‖L1=m

µk(ρ) < +∞

whenever ρε ⇀ ρ̃ weakly in L∞. Hence the sequence (µεk(ρε))ε is bounded. Then the
previous lower-semicontinuity result implies that

max
‖ρ‖L1=m

µk(ρ) = µk(ρ∗) ≤ lim inf
ε→0

µεk(ρε) = lim inf
ε→0

max
‖ρ‖L1=m

µεk(ρε)

which concludes the proof. �

3. Density method

In this section we discuss the numerical implementation of the density method, which
follows the same lines as [10] with some new technical difficulties working on the sphere.
The sphere is assumed to be discretized by a mesh that remains the same during the
optimization process. Let Vh = span(φ1, ..., φn) ⊂ H1(SN ) be a finite element space. If
v =

∑
i viφi we denote by v̄ = (v1, ..., vn)T its coordinates on the basis (φi)i. Even if we

made the choice here to discretize both the density and the eigenfunctions on the same
FE space Vh, we could have considered different ones as we did in our previously cited
work. Let ρ ∈ Vh be a density (i.e. ρ : Sn → [0, 1]). We denote by µ̄εk(ρ) the eigenvalue of
the finite-dimensional eigenvalue problem :
(9) M ε(ρ)ūεk(ρ) = µ̄εk(ρ)Kε(ρ)ūεk(ρ)

where
M ε(ρ) =

(ˆ
Sn

(ρ+ ε)∇φi∇φj
)
i,j

and
Kε(ρ) =

(ˆ
Sn

(ρ+ ε2)φiφj
)
i,j

.

Since we use a gradient-based optimization method, we need to differentiate µ̄εk(ρ) with
respect to its coordinates (ρ1, ..., ρn) in the basis (φi)i. Assuming that µ̄εk(ρ) is simple, we
can differentiate the equation (9) and multiply on the left by (ūεk(ρ))T to get

(10) ∂lµ̄
ε
k = (ūεk)T (∂lM ε − µ̄εk∂lKε) ūεk

(ūεk)TKε(ρ)ūεk
where the derivatives of the matrices are respectively

∂lM
ε(ρ) =

(ˆ
Sn
φl∇φi∇φj

)
i,j

and
∂lK

ε(ρ) =
(ˆ

Sn
φlφiφj

)
i,j

.

One may remember that since we are on the sphere, we don’t have scale-homogeneity of
the eigenvalue as it is the case in Rn. Hence we have to enforce the condition

´
Sn ρ = m,

which in the discrete case becomes ρ̄ · g = m where

g =
(ˆ

Sn
φl

)
l

.
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3.1. Multiple eigenvalues. One of the main hurdles in spectral shape optimization is
to handle the multiplicity of the eigenvalues. Indeed, in practice, the optimal density is
expected to have high multiplicity. The method presented in [10] consisted in adding a
constraint forcing the eigenvalues that were close (depending on a certain threshold σ)
to get them even closer. While it yielded good results in the planar case, it suffered one
peculiar issue here, especially in the case of µ1. Indeed, even if the optimal density seems to
be of multiplicity 2, the third eigenvalue is observed to be close to µ2 leading the previous
method either to fall into a local maximum of multiplicity 3 if σ was too high, or to be
too unstable to converge if σ was too small. One way to overcome this issue is to compute
a better direction than the one given by the gradient of µk. Several numerical methods
have been investigated in this direction, such as finding the direction h as a solution to
the problem

max
h∈Vh,‖h‖=1

min
{
dµεk(ρ).h, ..., dµεk+m−1(ρ).h

}
where m is the "guessed" multiplicity, chosen such that µεk+m−1(ρ) − µεk(ρ) ≤ σ and
µεk+m(ρ) − µεk(ρ) > σ. Such method has been used for instance in[5]. Heuristically, it
produces a direction that increases all the selected eigenvalues by a maximal amount.
Another, more rigorous method would be to consider the true directional derivative of our
multiple eigenvalue in the direction h (which always exists), namely

(µεk)′(ρ)(h) := lim
t→0+

µεk(ρ+ th)− µεk(ρ)
t

and in the same way as before, to search the direction that maximizes this variation :

max
h∈Vh,‖h‖=1

(µεk)′(ρ)(h).

This has been brilliantly studied in [14] where the author shows that the search of the
direction can be efficiently solved by semi-definite programming methods.

However, in our case, these methods did not seem to perform better that our previous
one. It turned out that a simple modification of our problem leads to a very good conver-
gence. Instead of searching for a direction based on directional derivatives, we regularize
our problem to make it differentiable. It can then be handled better from the interior
point optimizer. The idea is the following : suppose that µεk(ρ) stays away from µεk−1(ρ)
during the whole optimization process (which is always the case in practice) and is part
of a cluster µεk(ρ), ..., µεk+m−1(ρ) of eigenvalues closer than σ. Then obviously

(11) µεk(ρ) = min
{
µεk(ρ), ..., µεk+m−1(ρ)

}
.

But for x0, ..., xm−1 > 0, we have that

(12) min {x0, ..., xm−1} = lim
p→+∞

(∑
i

x−pi

)−1/p

so that by taking p large, we can approximately write

(13) min {x0, ..., xm−1} ≈
(∑

i

x−pi

)−1/p

.
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In this spirit, we instead optimize the functional

(14) ρ 7→
(∑

i

µεk+i(ρ)−p
)−1/p

.

This function being a symmetric function of the eigenvalues, it is expected to be smooth
near ρ if m is the actual multiplicity of µεk(ρ) [16]. If it is not, the largest eigenvalues of
the cluster are mostly ignored.

3.2. Dimension 1. After running a series of simulations on the sphere, it appeared that
the optimal density seems to be axially symmetric in the case of µ1. In order to get
even more insight on the density problem, we subsequently ran simulations only in 1D,
considering the density ρ as a real function of the latitude θ ∈ [0, π], i.e. the angle from
one pole to a point on the sphere. By separation of variables, if ρ : S2 → [0, 1] is axially
symmetric and not degenerated, then µ1(ρ) is the least non-zero eigenvalue of the following
two eigenvalue problems− 1

sin(θ)
d
dθ

(
ρ(θ) sin(θ)dy

dθ

)
+ ρ(θ)

sin2(θ)y = ρ(θ)µ̄y on (0, π)
y(0) and y(π) are finite− 1

sin(θ)
d
dθ

(
ρ(θ) sin(θ)dy

dθ

)
= ρ(θ)µ̃y on (0, π)

y(0) and y(π) are finite
.

See [7] for more details. Formally, by developping the derivative in the first differential
equation, we can see that the condition y(0) = yπ) = 0 is forced by the term in 1

sin(θ) ,
which penalizes large values of y in 0 and π. In the same way, we can see that in the
second differential equation, the boundary conditions needs to be y′(0) = y′(π) = 0.

As before, since we allow ρ to vanish, we need to regularize the problem to make it
elliptic. The problems that are actually solved are− d

dθ

(
(ρ(θ) sin(θ) + ε) dy

dθ

)
+ ρ(θ)+ε

sin(θ) y = (ρ(θ) sin(θ) + ε2)µ̄y on (0, π)
y(0) = y(π) = 0− d

dθ

(
(ρ(θ) sin(θ) + ε) dy

dθ

)
= (ρ(θ) sin(θ) + ε2)µ̃y on (0, π)

y′(0) = y′(π) = 0
where ε is supposed to be small.

3.3. Numerical considerations. Our optimization procedure is carried out by IPOPT
[20] while the finite element computations is perfomed in GetFEM [18]. A first opti-
mization is carried on a coarse mesh of 2246 vertices with P1 finite elements. A second
optimization is then performed with the result of the previous one as initilization on a
mesh consisting in 35401 elements (the meshes that are used can be vizualized Figure 1).
For each m, the optimization is performed multiple times with different initialization and
the density giving the best value is finally kept.

For both optimizations we take p = 20 and ε = 10−4.
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Figure 1. The meshes used for the density method.

4. Results : density method.

In this section we discuss the results obtained by the density method described above.
We focus only on the first three eigenvalues, since they already shows a rich behaviour.
In each graph, the value of the optimized eigenvalue is plotted in green as a function
of the total mass m and the corresponding density is denoted by ρm. In order to give a
comparison, for each µk we plot in red the corresponding eigenvalue for a union of k disjoint
geodesic balls of surface area m/k (denoted UBm

k ). This values have been approximated
by a finite element (FE) decomposition of the following 1D eigenvalue problem :

(15)


− 1

sin(θ)
d
dθ

(
sin(θ)dy

dθ

)
+ 1

sin2(θ)y = µy on (0, θm)
dy
dθ (θm) = 0
y(0) is finite

where θm = arccos (1− m
2π ) is the geodesic radius of the ball of surface area m on S2. In

practice, the solution is approximated using P1 FE with 10000 degrees of freedom.

4.1. Validation : µ1 with constraint. In order to validate our optimization process,
we rely on the following result of [9], which states that if we run the optimization outside
of a ball of the right area then the optimum is a ball :

Theorem 5. Let m ∈ (0, |Sn|/2) and let Bm be a geodesic ball of measure m in Sn. Let
Ω ⊂ Sn \ Bm be an open Lipschitz set such that |Ω| = m. Then µ1(Ω) ≤ µ1(Bm).

This theorem, proved by some mass transplantation technique "à la Weinberger", is
hence also valid for densities and could be reformulated as follows :

Theorem 6. Let m ∈ (0, |Sn|/2) and let Bm be a geodesic ball of measure m in Sn. Let
ρ : Sn → [0, 1] such that ρ = 0 on Bm and

´
Sn ρ = m. Then µ1(ρ) ≤ µ1(Bm).

In practice, we run the optimization process in the whole sphere but add the constraint
that all degrees of freedom of ρ that lies inside a certain ball Bm stay equal to 0. This
constraint is easily handled by IPOPT. The plots in Figures 2 and 3 show that the optimal
density is indeed the characteristic function of a ball.

4.2. An interesting case : µ1 in the whole sphere. We now consider the case where
ρ is allowed to fill the whole sphere. One first observation is that the optimal eigenvalue
is expected to be never less that n. Indeed, this eigenvalue is associated to constant
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Figure 2. Example of optimal densities for µ1 for m ∈ {2.17, 5.0} when ρ
is supported outside of a ball.

Figure 3. Optimal value of µ1 obtained by the density method, with the
constraint that the support of ρ is located outside of a ball.

densities hence we can chose the density ρ = m
|Sn| which leads to µ1(ρ) = µ1(Sn) = n. The

simulations actually suggest that this value is only attained near m = |Sn| as shown in
Figure 4.

Since the eigenvalue goes to infinity as m goes to 0, the graph is displayed on two
different scales for a better readability. The reader should pay a particular attention to
the range of the different axes. Something interesting happens : the spherical cap seems
not to be optimal for values of m greater than m ≈ 4.5. This is allowed by the fact that
ρ can fill the whole sphere, which wasn’t allowed with the ball constraint. A zoom on the
range m ∈ [3.5, 6.5] is displayed Figure 5.

We illustrate the behaviour of the optimal ρ in Figure 6 for different values of m. Deep
blue color corresponds to ρ = 0 while red color corresponds to ρ = 1.
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Figure 4. Optimal value of µ1 obtained by the density method.

Figure 5. Optimal value of µ1 near m ≈ 5.0.
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Figure 6. Example of optimal densities for µ1 for m ∈
{2.0, 4.98, 8.05, 11.2} (top) along with their latitudinal profile (bot-
tom).

Remark 7. Apart from m = 2.0 which seems to be the characteristic function of a geodesic
ball, the optimal density seems to be some "homogenized" spherical cap. This surprising
result has an important theoretical implication : even if the ball Bm were optimal for µ1
among shapes Ω such that |Ω| = m ≤ |Sn|/2, it would be impossible to prove it using the
standard mass transplantation technique of Weinberger [21]. Indeed, the proof would also
hold for densities, but the numerical results strongly indicates that it is false for m > 0.5.
To go further, it would be interesting to investigate if this kind of "homogenization" of
the sphere could be attained by some sequence of actual domains. This could for instance
suggest the non-existence of optimal domains for a large enough m.

The inspection of these results leads to the following conjecture :

Conjecture 1. Let m ∈ (0, |Sn|). Then the optimal density ρm of the problem

max
{
µ1(ρ) : ρ : Sn → [0, 1],

ˆ
Sn
ρ = m

}
.

is axially symmetric.

In the light of this conjecture, we illustrate on the same Figure 6 the density ρ as the
result of the 1D optimization procedure.

Note that it would be interesting to get more information on the behaviour of the
density near m = 4.5 where it seems to start to homogenize. A good indication that the
optimal density is an actual domain would be that the size of the set ρm /∈ {0, 1} is always
proportionnal to the size of an element under mesh refinement. On the contrary, if ρm
is a density, then the size of this set should be independant of the size of one element.
Let N be the number of elements of the segment [0, π]. For N ∈ {100, 200, 400, 800}, we
compute the quantity

hm(N) = N

π

ˆ π

0
ρm(1− ρm).
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Figure 7. Mesh-refinement procedure une 1D for different values of m.

Since π/N is the size of one element, this quantity should be constant in N if ρm is a
domain for the reasons stated previously. If ρm is not a domain, then we would expect
hm(N) to double when doubling the number of points in the mesh. To compare this
quantity for different N we normalize this quantity at N = 100 and define

Dispertionm(N) = hm(N)
hm(100)

We plot the graph of Dispertionm for different values of m in Figure 7
A few things can be deduced from this graph. For m large enough (approximately

m > 4.6), the behaviour is the one we would observe for a density which is not a domain,
as the dispertion grows with the number of points. On the other hand, it appears that for
m small enough ρm seems to be a domain since its dispertion is constant. It is the subject
of the following conjecture.

Conjecture 2. There exists δ > 0 such that for all m ∈ (0, δ), ρm = 1Bm i.e. the optimal
density is the one of a geodesic ball.

Following the numerical observations above, the value of δ would lie between 3.5 and
4.6.

4.3. Results for µ2. The results for µ2 are the most stable ones. Indeed, no matter the
value of m, the corresponding optimal density is always attained by the characteristic
function of the union of two balls of the same measure as can be seen in Figure 8. This
numerical experiment gives strong insights of the validity of Theorem 2 of [9] which asserts
that µ2 is maximal for the disjoint union of two balls B

m
2 tB

m
2 . Figure 9 shows the optimal

densities that are obtained for some values of m.
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Figure 8. Optimal value of µ2 obtained by the density method.

Figure 9. Example of optimal densities for µ2 for m ∈ {2.31, 5.46, 8.23, 11.01}.

4.4. Results for µ3. As for the case of µ1, the optimization procedure for µ3 exhibits
various different behaviours depending on the value of m. Note that the union of three
balls of the same surface area seems to never be optimal, as shown in Figure 10.

In Figure 11 are displayed the different types of densities that can be obtained with
the density method. As it could be expected, for small m we get the same type of result
than in the plane [10]. Only the last, for large m, seems to be an actual characteristic
function of some "napkin ring"-shaped domain. For m ≈ 8.0, we get some homogenized
geodesic annulus. On the two-dimensional sphere it is expected to see that for large m
the eigenvalue goes to 2 since µ1(S2) is of multiplicity 3 and µ1(S2) = 2.

4.5. Data. All the final solutions are available in MEDIT format at https://github.
com/EloiMartinet/Neumann_Sphere/. A FreeFem++ [15] script allowing to read the
solutions and compute the eigenvalues is also provided for replicability purposes. See the
README file for more information.

https://github.com/EloiMartinet/Neumann_Sphere/
https://github.com/EloiMartinet/Neumann_Sphere/


14 E. MARTINET

Figure 10. Optimal value of µ3 obtained by the density method.

Figure 11. Example of optimal densities for µ3 for m ∈ {2.0, 5.0, 8.03, 11.0}.

5. Level-set method

In this section we focus on the optimization of the original problem (2) through the
level-set method. This allows to give more informations for the original shape optimization
problem, when optima lead by the previous density method didn’t match the characteristic
function of an actual shape. The level-set method consists in representing the domain Ω
as the level-set of a function has been extensively used for shape optimization, either for
compliance or eigenvalue optimization (see for example [14], [3], [1] among others). In the
line of [1] and in order to fix the notations, we recall main ideas of the level set approach.

Let t ∈ [0, T ] and Ω(t) ⊂ Sn be a domain evolving in time according to a velocity field
V : [0, T ] × Sn → TSn. More precisely, if Ω0 is a domain in Sn and χ is the flow of V
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defined as the solution of the differential equation{
χ′(x0, t) = V (t, χ(x0, t))
χ(x0, 0) = x0 ∈ Ω0

then we can define
Ω(t) := χ(Ω0, t).

In the framework of the level-set method, we represent our domain by a function φ :
[0, T ]× SN → R such that

(16) ∀x ∈ SN , ∀t ∈ [0, T ],


φ(t, x) < 0 if x ∈ Ω(t)
φ(t, x) = 0 if x ∈ ∂Ω(t)
φ(t, x) > 0 if x ∈ SN \ Ω(t)

.

The motion of Ω(t) is equivalent to the advection of φ by the equation
(17) ∂tφ(t, x) + V (t, x) · ∇φ(t, x) = 0 on (0, T )× Sn.

Observing that nΩ(t) := ∇φ(t,.)
|∇φ(t,.)| is an extension of the unitary outward normal of Ω(t)

for all t and if V is of the kind V (t, x) = v(t, x)nΩ(t)(x) with v(t, x) ∈ R, we can re-write
the previous equation as

(18) ∂tφ(t, x) + v(t, x)|∇φ(t, x)| = 0 on (0, T )× Sn.

In our case, [0, T ] represents a single timestep and therefore T is small enough to consider
that v(t, x) ≈ v(x) for all t ∈ [0, T ] which finally leads to the so called Hamilton-Jacobi
equation :

(19) ∂tφ(t, x) + v(x)|∇φ(t, x)| = 0 on (0, T )× Sn.

Numerically, this equation is solved by the method of characteristics, thanks to the
"advect" toolbox that can be found at https://github.com/ISCDtoolbox/Advection/.
This method supports P1 functions defined on surface meshes. Many thanks to the authors
for their precious work.

5.1. Shape derivative. At each time step, the purpose is to find some vector field v such
that advecting φ by (19) on this small time step increase the considered eigenvalue. In
order to address this issue we need to compute the shape derivative of an eigenvalue of a
domain of Sn. This shape derivative is given by the following result (see for instance [22]):

Theorem 8 (Shape derivative). We assume that Ω is C1 with non-empty boundary. Let
k ∈ N and V : SN → TSn be a smooth vector field with compact support in the neighborhood
of Ω0. We denote

µ′k(Ω0, V ) := lim
t→0+

µk(Ω(t))− µk(Ω0)
t

.

Moreover we assume that µk(Ω0) is simple. Then this limit exists and

(20) µ′k(Ω0, V ) =
ˆ
∂Ω0

(
|∇u|2 − µk(Ω0)u2

)
(V.n)dσ

with u an eigenfunction associated to µk(Ω0) with unitary L2 norm and n the outward
normal.

https://github.com/ISCDtoolbox/Advection/
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The previous theorem allows us to only consider normal variations of the boundary and
from this consideration µ′k(Ω0, V ) = µ′k(Ω0, v) where v = V.n. Moreover, it shows that we
can choose v = |∇u|2 − µk(Ω0)u2 as a gradient direction. This, however, may not be the
best choice as we see hereafter.

5.2. Handling area constraint. Despite being able to compute a gradient direction
(20), we also have to fullfill the constraint |Ω| = m in the original problem (2). We could
choose to add a penalization term and maximize the function

Ω 7→ µk(Ω)− b(|Ω| −m′)2

instead, with b > 0 and m′ a parameter allowing to control for the total mass m. However,
if we consider the sequence of geodesic balls B(ε) of radius ε > 0 then we can fin that

µk(B(ε))− b(|B(ε)| −m′)2 −−→
ε→0

+∞

which establishes that the optimum is never attained for a positive area. However, a result
by Strichartz allows to replace the unbounded quantity µk(Ω) by quantity |Ω|

2
nµk(Ω) even

if we do not have invariance by dilation as in the Euclidian case. Indeed, using formulas
(3.15) and (3.16) of [19] in the special case n = 2, we get the following property :

Proposition 9. Let Ω ⊂ S2. Then

(21) |Ω|µk(Ω) ≤ 2πk2.

This generic bound allows to maximize the function

(22) J(Ω) := |Ω|µk(Ω)− b(|Ω| −m′)2

which prevents the function to blow-up. Then if Ω∗ maximizes (22), it is solution of (2)
with m = |Ω∗|.

There is two way to implement the level set method. The so-called ersatz material
approach involves a fixed mesh where the "void" part is filled with some material with good
properties. The other one involves to remesh the domain at each step according to the
level-set function. While the second one is more accurate, it suffers two main drawbacks,
the most obvious one being its computational cost. The second one is related to the
connectivity of Ω(t): suppose that we want to optimize µk, starting from a topologically
complex domain. The level-set method allowing topological changes, it is very likely that at
one point t, Ω(t) splits into k+1 connected components. Then µ0(Ω(t)) = ... = µk(Ω(t)) =
0 and the associated eigenfunctions are constant on each connected component. This leads
the shape derivative to be equal to

µ′k(Ω, v) = −µk(Ω)
ˆ
∂Ω
vdσ.

The reader may recognise that this is proportionnal to the shape derivative of the function
Ω → |Ω|. This implies that the optimization process will only optimize on the volume.
One the other hand, the "ersatz material" approach allows transparent topological changes
and is faster than the second one since it doesn’t require remeshing at each iteration. This
is why we perform a first optimization using the ersatz material method and then use a
remeshing approach for a final optimization of higher accuracy.
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5.3. Level-set with ersatz material. In this section we assume the eigenvalues to be
simple. According to the approximation theorem 2, we fix a small ε > 0 and solve the
problem

−div[(1Ω + ε)∇u] = µεk(1Ω)(1Ω + ε2)u
at each step. Thanks to the above-mentioned theorem, we expect this eigenvalue to be
close to the actual one for small ε. However, the function 1Ω = 1{φ<0}, as defined on the
mesh, may be highly irregular. This is why we approximate it in the following way

1Ω ≈
1
2

(
1− φ√

φ2 + σ2

)
with σ > 0 small. This avoids degeneracy in the denominator. Similar regularizations
have been used in this framework, see for instance [2] For the same reasons, the extended
normal field is approximated by

nΩ ≈
∇φ√

|∇φ|2 + σ2

5.4. Initialization. It is well-known that the levelset method is prone to fall into local
optima because of its sensitivity to initialization. To tackle this problem, the levelset
function is initilized with a randomized trigonometric sum of the type

φ(θ, ψ) = Re


p∑
j=0

q∑
k=0

cj,k exp{i(jθ + kψ)}


where the ci,j are chosen at random and θ, ψ ∈ [0, π]× [0, 2π] are respectively the latitude
and longitude on S2. It is expected that the larger q and p, the more complex φ is and,
by extension, Ω.

5.5. Multiple eigenvalues. The case of multiple eigenvalues, which always occursin
practice, is handled in the same way as in the density case.

5.6. Numerical considerations. In our simulations, we took ε = 10−4 and σ = 10−5.
Moreover, to capture the variations of Ω(t) with good accuracy and because the level-set
function tends to steepen near ∂Ω(t) over the iterations, we remesh the domain thanks
to the MMG library [12] and recompute the signed distance function every 20 iterations
thanks to the mshdist tool [13]. The maximal size of an element is hmax = 10−1 and the
minimal size is hmin = 10−3. Just as previously, we use P1 finite elements and the FE
computations are performed in GetFEM. The optimization algorithm is a simple gradient
algorithm with a fixed number of N = 600 steps. The step size δt is chosen such that, if v
is the gradient direction at a given moment then δt = γ

‖v‖∞
with γ = 3.10−2. The penalty

term b is chosen to be equal to 5 and m′ takes multiple values between 0.5 and 4π. The
algorithm is presented in algorithm 1 for clarity purposes. Note that this algorithm is the
one performed for a fixed m′. Finally, as in the density case, the optimization is performed
multiple times with different initial level set functions and the best one is kept.

5.7. Level-set with remeshing. The following method is triggered once the previous
one has converged, hence we don’t expect major changes in topology which could be
problematic as discussed before. In this procedure, we remesh the sphere such that ∂Ω =
{φ = 0} is a polygonal line of the mesh at each timestep. This then allows us to extract
the mesh describing Ω and solve the original eigenvalue problem on it, without having to
compute the approximation µεk. But then the optimization direction v = |∇u|2−µk(Ω)u2
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Algorithm 1 ersatz material levelset algorithm.
Require: k > 0 . The eigenvalue we optimize
Require: A mesh in MEDIT format
Initialize the levelset φ
for i from 0 to N do

if N = 0 mod 20 then
Remesh using MMG.
Reinitialize the levelset function φ.

end if
Compute µεk(Ω) and the associated eigenfunctions using FE.
Compute v the maximizing direction.
Advect φ during a time δt.

end for

(with u an eigenfunction of µk(Ω)) is only defined on Ω while we need it to be defined
in the whole sphere Sn in order to advect the level-set function. In this purpose we use
the well-known "extension-regularization" method which allows - as its name suggests - to
extend the velocity field on all Sn and regularize it at the same time [14]. Still assuming
that the eigenvalue is simple, we see that v 7→ µ′k(Ω0, v) is a continuous linear form in v.
Hence, we can find w the unique solution to the variational problem

(23) ∀v ∈ H1(Sn),
ˆ
Sn
α∇v∇w + vw = dµk(Ω0, v)

where α > 0. Then w is indeed an extension of |∇u|2 − µku2 on H1(Sn) with regularity
depending on α. Moreover, w is a valid gradient direction since

dµk(Ω0, w) =
ˆ
Sn
α|∇w|2 + w2 ≥ 0.

5.8. Numerical considerations. The numerical values chosen for this second optimiza-
tion are mostly the same as the previous procedure. One add the regularization parameter
α = 0.1 and that hmax is now equal to 5.10−2. The step size δti is now adaptative : if
at a given iteration i we have that µk(Ωi) > µk(Ωi+1) then δti+1 = δti/2. Otherwise
δti+1 = 1.1δti. The optimization stops when δti < 10−7 and the mesh with the best cost
is kept. The pseudocode of the algorithm for a fixed m′ is provided in algorithm 2.
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Algorithm 2 ersatz material levelset algorithm.
Require: k > 0 . The eigenvalue we optimize
Require: The mesh and optimal domain Ω obtained by the previous procedure.

Initialize the levelset φ as the one of Ω.
while δt > 10−7 do

Remesh using MMG.
Reinitialize the levelset function φ.
Extract the submesh Ω
Compute µk(Ω) and the associated eigenfunctions using FE.
Compute v the maximizing direction on ∂Ω
Extend v to the whole mesh of S2 by extension-regularization
Advect φ during a time δt
if The cost function increased then

δt← 1.1δt
else

δt← δt/2
end if

end while

6. Results : level-set method.

We report here the optimization results for k ∈ {1, 2, 3}. We denote by Ωm the opti-
mum computed with the levelset procedure verifying |Ωm| = m. The optimal eigenvalues
µk(|Ωm|) are plotted in green, against the corresponding surface aream. As for the density
method, we also plot in red the eigenvalue µk (UB(|Ωm|, k)) of an union of k disjoints balls
of total area m. Since the eigenvalue goes to ∞ as |Ωm| goes to 0, we divide the plot on
two parts 0 < |Ωm| ≤ 2π and 2π < |Ωm| ≤ 4π for better readability.

6.1. Optimization of µ1. In Figure 12 are displayed the results for the optimization of
µ1. The spherical cap seems to be the optimal shape up to m ≈ 8.0, after which it clearly
ceases to be the optimal shape. From that point up to m = 4π, complex shapes arises,
consisting in a plain hemisphere and a lot of holes in the opposite one. Different views of
one of those shapes can be seen in Figure 13, where m ≈ 11.13 and µ1(Ωm) ≈ 1.77 (for
instance, a spherical cap of this surface area would give µ1(Bm) = 1.62). This strange
behaviour, combined with the density approach above, may suggest that the actual optimal
may be attained by some kind of homogenization procedure. Some simple, non conclusive
numerical test have been performed in this direction but this problem surely needs further
investigation and may lead to interesting numerical and theoretical developements.

More optimal shapes are displayed in Figure 14. Looking at Ωm for m = 8.0 (the third
one from the left), one can imagine that it would be possible for the geodesic cap to cease
to be optimal for m way lower than 8.0 but the numerical procedure wouldn’t be able to
"see" it because it would be necessary to create details thinner than the size of an element
of the mesh. However, it seems unlikely that the spherical cap ceases to be optimal for
the same mass m as the density method:

Conjecture 3. Let δ be the same as in Conjecture 2. Then there exists δ′ > δ such that
for all 0 < m < δ′, Ωm = Bm

Remark 10. The fact that δ′ ≥ δ is obvious; the interesting part would be to show that
the inequality is strict.
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Figure 12. Optimal value of µ1 obtained by the level-set method.

Figure 13. Rotationnal view of the optimal shape obtained by the level-
set method for large m.

Figure 14. Example of optimal domains for µ1 for m ∈ {2.03, 5.1, 8.0, 10.85}.

6.2. Optimization of µ2. The optimal results for µ2 are displayed Figure 15. We can
clearly see that the optimal shape is always the union of two spherical caps, as it has been
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Figure 15. Optimal value of µ2 obtained by the level-set method.

Figure 16. Example of optimal domains for µ2 for m ∈ {2.12, 5.1, 8.13, 11.17}.

proven in [9]. Hence this case can be considered as a test case to support the validity of
the method. In Figure 16 are shown the optimal shapes. For m = 1.17, we see that the
computed shape isn’t a union of two disjoint disks. Indeed, for large m, the first levelset
procedure struggled to disconnect one domain into two disks due to numerical instabilities.
The eigenvalue is however really close to the one of two disks.

6.3. Optimization of µ3. In Figure 17 is displayed the results for the optimization of
µ3. As for the density case, this eigenvalue shows a rich variety of behaviours depending
on the value of m (see Figure 18).

The results seems to be in accordance with the ones given by the density method.

6.4. Data. As for the results of the density method, all the final solutions are avail-
able in MEDIT format at https://github.com/EloiMartinet/Neumann_Sphere/, with
a FreeFem++ script allowing to compute the eigenvalue and surface area of each solution.

https://github.com/EloiMartinet/Neumann_Sphere/


22 E. MARTINET

Figure 17. Optimal value of µ3 obtained by the level-set method.

Figure 18. Example of optimal domains for µ3 for m ∈ {2.0, 5.22, 8.0, 11.04}.

7. Explorations on a torus

As it has been mentioned in the introduction, this last part is devoted to the optimiza-
tion of eigenvalues on a torus. Specifically, we consider the torus T in R3 parametrized
by

(u, v) 7→ ((R+ r cos v) cosu, r sin v, (R+ r cos v) sin u) ,

that is, the torus with major radius R and minor radius r. In the sequel, we will choose
R = 2 and r = 1. Knowing that the surface area of T is given by

|T| = 4π2Rr

we have in our case |T| ≈ 78.96.
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The problem we consider now is analogous to the one on the sphere. With Ω ⊂ T being
a Lipschitz open domain, the eigenvalue problem is{

−∆u = µk(Ω)u in Ω,
∂u
∂n = 0 on ∂Ω,

.

We also use the same notion of generalized eigenvalues of a density ρ : T → [0, 1], we
define

µk(ρ) := inf
V ∈Vk+1

max
u∈V \{0}

´
T ρ|∇u|

2´
T ρu

2 ,

where Vk+1 is the family of subspaces of dimension k + 1 in
{u · 1{ρ(x)>0} : u ∈ C∞c (T)}.

We then consider the two optimization problems
sup {µk(Ω) s.t. Ω ⊂ T, |Ω| = m,Ω bounded, open and Lipschitz}

and

sup
{
µk(ρ) s.t. ρ : T→ [0, 1],

ˆ
T
ρ = m

}
.

with 0 < m < |T| and k > 0.
This last formulation allows to perform the same density method performed on the

sphere. These are the results presented hereafter, followed by the results obtained by the
level set method.

7.1. Density optimization. We precise that the optimization parameters that have been
used are the same than the ones used for the sphere. We begin to depict some of the
optimal densities in Figure 19. For a better visualization, we recall that all the meshes
and densities are available at https://github.com/EloiMartinet/Neumann_Sphere/.

We can notice that for small enough masses, the optimal densities seems to be the
characteristic function of geodesic balls for k ∈ {1, 2, 3}. However, by comparison with the
case of the plane and the sphere, the case of µ3 must be taken with caution. A striking
fact is that contrary to the case of the sphere, the optimal density for µ1 seems to stay a
charateristic function whereas we cans witness some homogenization for µ2. The optimal
eigenvalues plotted as functions of m are shown in Figure 20.

7.2. Level set optimization. In Figure 21 are the optimal domains obtained by the level
set method for µ1, µ2, µ3 and various masses.

The optimal eigenvalues plotted as functions of m are shown in Figure 22.

https://github.com/EloiMartinet/Neumann_Sphere/
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Figure 19. Example of optimal densities for µ1, µ2 and µ3 (resp. first,
second and third row) for m ∈ {3, 22, 43, 68} approximately.
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Figure 20. Optimal values of µ1, µ2 and µ3 (resp. first, second and third
row) obtained by the density method.
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Figure 21. Example of optimal domains for µ1, µ2 and µ3 (resp. first,
second and third row) for m ∈ {4, 22, 42, 60} approximately.
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Figure 22. Optimal values of µ1, µ2 and µ3 (resp. first, second and third
row) obtained by the level set method.
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8. Discussion

We have presented two ways to explore numerically the optimization of eigenvalues of
the Laplace-Beltrami operator with Neumann boudndary conditions for domains in the
sphere and the torus. The first way generalizes the notion of eigenvalues of domains and
thus is independant of topological consideration. On the other hand, the second method
relies on the level set representation of the domain, which allows topological changes.

In the case of the optimization on the sphere, this flexibility turned out to be an impor-
tant feature, regarding the topological complexity of certain optimal domains for µ1 on the
sphere. Indeed, while the density optimization leads to optima that does not corresponds
to domains, the level set procedure tries to create areas with a lot of holes, which might
indicate non-existence of optimal domains for large enough surface area. Oppositely, it
seems clear that for small enough surface area, the optimal density (and thus, optimal
domain) for µ1 on the sphere is the one of a geodesic ball. It has then been witnessed that
the behaviour of µ2 on the sphere was completely clear. Indeed, the optimal domains are
always the union of two geodesic balls as it have been shown in [9]. For µ3 , it might be
difficult to decribe theoretically the way optima acts depending on the total surface area
but it would be interesting to prove some necessary conditions such domains have to meet,
such as symmetry.

In the case of the optimization on the torus, we noticed that while homogenization
happened this time for µ2 and not for µ1. Further investigations may be needed to
understand better how this phenomenon evolves with the size of the torus, and if it such
homogenization happens in flat tori like (Rn/Zn).

In any case, an interesting result would be to get a better grasp on the existence or
non-existence of optimal domains on manifold.
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