Performance optimization of ZnO nanowire/parylene-C composite-based piezoelectric nanogenerators - Université Savoie Mont Blanc
Article Dans Une Revue Nano Trends Année : 2025

Performance optimization of ZnO nanowire/parylene-C composite-based piezoelectric nanogenerators

Résumé

Piezoelectric nanogenerators (PNGs) based on ZnO nanowires embedded in a polymer matrix have shown great promise in converting ambient mechanical energy into electrical energy, positioning them as candidates for autonomous sensor applications. Here, we fabricate vertically integrated ZnO NW/parylene-C composite-based PNGs using a capacitive configuration. By carefully controlling the thickness of the parylene-C top layer over ZnO nanowire arrays, four PNGs with parylene-C top layer thicknesses ranging from 1.1 to 3.2 µm were successfully fabricated. Raman spectroscopy suggests that the parylene-C does not affect the crystallographic properties of ZnO nanowires when coated. In addition, electrical impedance measurements reveal that increasing the parylene-C top layer thickness decreases the PNG capacitance, leading to higher internal impedance. The performance of these PNGs is assessed through piezoelectric characterizations across a range of load resistances, from 50 kΩ to 122 MΩ, under vertical compression forces of 1 N applied at 0.2 Hz. These tests have identified an optimal parylene-C top layer thickness of around 2 µm, resulting in an instantaneous power density of 1.8 µW/ cm 3 generated by the PNG. These findings highlight promising pathways for enhancing the efficiency and performance of PNGs.

Domaines

Matériaux
Fichier principal
Vignette du fichier
NanoTrendsManrique2025.pdf (7.4 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-04839530 , version 1 (16-12-2024)

Licence

Identifiants

Citer

Manuel Manrique, Vincent Consonni, Gustavo Ardila, Aymen Ghouma, Gwenaël Le Rhun, et al.. Performance optimization of ZnO nanowire/parylene-C composite-based piezoelectric nanogenerators. Nano Trends, 2025, 9, pp.100066. ⟨10.1016/j.nwnano.2024.100066⟩. ⟨hal-04839530⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More