Powers are easy to avoid - Université Savoie Mont Blanc
Pré-Publication, Document De Travail Année : 2020

Powers are easy to avoid

Résumé

Suppose that $\widetilde{\mathbb R}$ is an o-minimal expansion of the real field in which restricted power functions are definable. We show that if $\widehat{\mathbb R}$ is both a reduct (in the sense of definability) of the expansion $\widetilde{\mathbb R}^{\mathbb R}$ of $\widetilde{\mathbb R}$ by all real power functions and an expansion (again in the sense of definability) of $\widetilde{\mathbb R}$, then, provided that $\widetilde{\mathbb R}$ and $\widehat{\mathbb R}$ have the same field of exponents, they define the same sets. This can be viewed as a polynomially bounded version of an old conjecture of van den Dries and Miller.
Fichier principal
Vignette du fichier
2011.10335v1.pdf (253.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04730263 , version 1 (10-10-2024)

Identifiants

Citer

Gareth Jones, Olivier Le Gal. Powers are easy to avoid. 2024. ⟨hal-04730263⟩
68 Consultations
19 Téléchargements

Altmetric

Partager

More