
HAL Id: hal-04646960
https://univ-smb.hal.science/hal-04646960

Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

AIoT Guidebook: Comprehensive tutorial for developing
IoT and AI applications on STM32 microcontrollers

Mateus Galvão, Pietro M. Ferreira

To cite this version:
Mateus Galvão, Pietro M. Ferreira. AIoT Guidebook: Comprehensive tutorial for developing IoT and
AI applications on STM32 microcontrollers. 2024, �10.5281/zenodo.12700232�. �hal-04646960�

https://univ-smb.hal.science/hal-04646960
https://hal.archives-ouvertes.fr

AIoT Guidebook: Comprehensive tutorial for developing
IoT and AI applications on STM32 microcontrollers
Mateus H. Galvão1, 2, 4 and Pietro M. Ferreira1, 2, 3

1 Université Paris-Saclay, CentraleSupélec, CNRS, Lab. de Génie Électrique et Électronique de Paris,
91192, Gif-sur-Yvette, France 2 Sorbonne Université, CNRS, Lab. de Génie Électrique et Électronique
de Paris, 75252, Paris, France 3 Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, Grenoble INP,
CNRS, CROMA, Grenoble, France 4 École Nationale Supérieure de Techniques Avancées, Institut
Polytechnique de Paris, 91120, Palaiseau, France

DOI: 10.5281/zenodo.12700232

Software
• Release
• Repository

Submitted: N/A
Published: N/A

License
Authors of papers retain
copyright and release the work
under a GNU General Public
License v3.0 (GNU GPLv3).

Chapter 1: Overview and Objectives

1. Learning Goals
The goal of this tutorial is to design various Internet of Things (IoT) applications through
experimentation, creation, and validation of functional projects. By combining technological
insights with practical, hands-on project-based learning, you will gain a comprehensive under-
standing of the components that make up a connected system, ranging from sensor selection
to data processing in cloud and Artificial Intelligence (AI).
We will utilize different electronic development boards along with two development environments:
MBed OS and STM32CubeIDE. Each section of this tutorial will be dedicated to teaching
essential concepts of both development environments, IoT implementations, ThingSpeak cloud,
and embedded AI. These tutorials are designed to inspire you to implement your own projects.
This material covers several key areas. First, it focuses on electronic design and integration,
involving the selection and integration of sensors and other electronic components. Next, it
addresses processing and communication, which includes programming in C, processing on the
embedded board, and implementing communication protocols. The tutorial also delves into
the implementation of AI, where you will learn to use pre-trained AI models in your embedded
projects. Finally, it also explores data processing and application on a server via ThingSpeak,
covering data handling and visualization on a cloud-based server.
The project involves multiple steps, including specifying a connected object and a target
application by describing the needs and functionalities, assembling and integrating different
elements to create the object, focusing on hardware design involving sensors and the processor
board, integrating the hardware with AI to determine if your model can be implemented into
your project and understanding its limitations, and developing the application and its cloud
environment with a focus on software design involving data processing and visualization.

2. The Hardware and Software
2.1 B-L475E-IOT01A Development Board

For the first part of this material, we will use the board referenced a B-L475E-IOT01A. It
(Fig. 1) features an STM32L475VGT6 microcontroller, memory, sensors, radio frequency
modules allowing for wireless connections, two USB connections, a connector for Arduino
extensions, and two microphones. Thus, it constitutes a complete system for developing a
connected object. Additionally, it is possible to add external sensors or radio frequency modules
to enhance its functionalities. Its dimensions are 90mm x 60mm. It is assembled using SMD
components placed on both sides (Fig. 2(a) and 2(b)). Its functional description is illustrated
in Fig. 3 with all the peripherals.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

1

https://doi.org/10.5281/zenodo.12700232
https://github.com/Mateushga1/AIoT-Guidebook/tree/v1.0.0
https://github.com/Mateushga1/AIoT-Guidebook
https://www.gnu.org/licenses/gpl-3.0.en.html
https://doi.org/10.5281/zenodo.12700232

Figure 1: B-L475E-IOT01A Discovery Board.

(a) (b)

Figure 2: B-L475E-IOT01A top (a) and bottom (b) views.

Figure 3: B-L475E-IOT01A Discovery Board pinout.

The microcontroller integrates 3 serial interfaces, 2 serial audio interfaces, 1 analog-to-digital
converter, 1 I2C port, 1 USB connection, and 1 digital input/output port (GPIO). Its core is a
32-bit ARM RISC microprocessor with a power of 100 DMIPS (Dhrystone Million Instructions
Per Second).
The board (Fig. 2(a), 2(b) and 3) includes a 3-axis magnetic induction sensor (+/-16 gauss =
+/-16e-4T), a 3-axis acceleration sensor (+/-16g), and a 3-axis gyroscope (+/-2000°/s). It
features a pressure sensor (260-1260hPa), a temperature sensor (+/-0.5°C), and a humidity
sensor (0-100% relative humidity, accuracy +/-3.5%). Additionally, it has a motion and
time-of-flight sensor (<2m) based on an infrared laser, and an authentication and security
sensor.
The board includes 4 radio frequency modules:

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

2

https://doi.org/10.5281/zenodo.12700232

1. a Bluetooth module (V4.1),
2. a WiFi module (802.11 b/g/n),
3. an NFC tag communication module,
4. a sub-GHz 868MHz module.

2.2 B-U585I-IOT02A Development Board

For the last section, that is where we will implement machine learning models into our projects,
we will use the developer board B-U585I-IOT02A, as it offers 2 Mbytes of Flash memory
(twice as much as the model used previously) and 786 Kbytes of SRAM (more than six
times greater than the previous model). These two parameters are crucial when deciding
which microcontroller to use because they are the primary factors that limit edge applications.
Typically, models require a significant amount of memory to perform their calculations.
The enhanced memory capacity of the B-U585I-IOT02A makes it an excellent choice for
developing embedded AI solutions, allowing for more complex and efficient machine learning
models to be implemented directly on the device. This capability is essential for achieving high
performance and independence in edge AI applications.
The board supports multiple connectivity options such as a Wi-Fi® module (802.11 b/g/n
compliant) from MXCHIP and Bluetooth® Low Energy from STMicroelectronics. Additionally,
it is equipped with various MEMS sensors, including a 3-axis magnetometer, 3D accelerometer,
3D gyroscope, pressure sensor, relative humidity and temperature sensor, time-of-flight and
gesture-detection sensor, and an ambient-light sensor. It also includes two digital microphones
and a security/authentication module for IoT devices.
Connectivity is further enhanced by the inclusion of multiple board connectors: USB Type-
C®, ARDUINO® Uno V3 expansion connectors, a camera module expansion connector, two
STMod+ expansion connectors, and a Pmod™ expansion connector. The board offers flexible
power supply options, including ST-LINK USB VBUS, USB connector, or external sources. An
on-board STLINK-V3E debugger/programmer provides USB re-enumeration capability, mass
storage, Virtual COM port, and a debug port.
Fig. 4, 5(a) and 5(b) show the board, top and bottom peripherals respectively:

Figure 4: B-U585I-IOT02A Discovery Board.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

3

https://doi.org/10.5281/zenodo.12700232

(a) (b)

Figure 5: B-U585I-IOT02A top (a) and bottom (b) views.

The STM32U585AII6Q microcontroller at the core of this board integrates advanced function-
alities and interfaces to support diverse applications. The microcontroller includes:

• Analog-to-Digital Converters (ADC): One fast 14-bit ADC (2.5 Msps) and one 12-bit
ADC (2.5 Msps)

• Digital-to-Analog Converters (DAC): Two DAC channels
• Comparators and Operational Amplifiers: Two comparators and two operational

amplifiers
• Voltage Reference: An internal voltage reference buffer
• Timers: A variety of timers including:

– Four 32-bit general-purpose timers
– Three 16-bit general-purpose timers
– Two 16-bit PWM timers dedicated to motor control
– Two 16-bit basic timers
– Four 16-bit low-power timers
– A low-power RTC (Real-Time Clock)

The microcontroller also features a comprehensive set of communication interfaces:
• I2C Ports: Four I2C interfaces
• SPI Ports: Three SPI interfaces
• UART/USART Ports: Three USARTs, two UARTs, and one low-power UART
• Serial Audio Interfaces (SAIs): Two SAIs for audio processing
• Digital Camera Interface: One DCMI (Digital Camera Interface)
• SDMMC: Two SDMMC (Secure Digital MultiMedia Card) interfaces
• FDCAN: One Flexible Data-Rate CAN interface
• USB Connections: One USB OTG full-speed and one USB Type-C / USB Power

Delivery controller
• PSSI: One generic synchronous 8-/16-bit PSSI (parallel data input/output slave interface)

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

4

https://doi.org/10.5281/zenodo.12700232

The core is a 32-bit ARM RISC microprocessor, enhanced with Arm® TrustZone® for secure
execution environments.
The MEMS sensors on the board provide comprehensive environmental and motion sensing
capabilities:

• A 3-axis magnetometer for magnetic field measurement
• A 3D accelerometer for motion detection
• A 3D gyroscope for angular velocity measurement
• A pressure sensor covering 260-1260 hPa
• A combined humidity and temperature sensor
• A time-of-flight sensor for distance and gesture detection
• An ambient-light sensor

Additionally, the board integrates authentication and security features to ensure secure opera-
tions in IoT applications.
The radio frequency modules on the board include:

• A Bluetooth module compliant with Bluetooth V4.1 standards
• A Wi-Fi module compliant with 802.11 b/g/n standards

This combination of features makes the B-U585I-IOT02A an ideal platform for developing and
prototyping smart connected objects, with ample support for additional external modules and
sensors through various expansion connectors.

2.3 How to Program your MCU

Programming an STM32 microcontroller unit (MCU) can be done using several methods and
tools, each offering different features and benefits. Here are some of the most common ways
to program an STM32 MCU:
STM32CubeIDE :

STM32CubeIDE is an integrated development environment (IDE) from STMicroelectronics
tailored specifically for STM32 microcontrollers. It combines ST’s STM32CubeMX, which is a
graphical tool for configuring microcontrollers and generating initialization C code, with the
Eclipse IDE and the GCC toolchain.

• Features:

– Graphical Configuration: STM32CubeMX allows you to configure peripherals
and middleware components through a graphical interface.

– Code Generation: Automatic generation of initialization code for peripherals and
middleware.

– Debugging: Integrated debugging tools with support for ST-LINK debug probes.
– Compilation: Uses GCC toolchain for compiling code.
– Project Management: Allows for easy project management and configuration.

• Advantages:

– Integrated Environment: Everything you need is in one place, from configuration
to debugging.

– STMicroelectronics Support: Direct support from the MCU manufacturer ensures
up-to-date features and compatibility.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

5

https://doi.org/10.5281/zenodo.12700232

– Free to Use: STM32CubeIDE is free to download and use.
MBed OS:

MBed OS is an open-source embedded operating system designed specifically for the Internet
of Things (IoT). It provides a high-level API, simplifying the development of IoT applications
on ARM Cortex-M microcontrollers, including STM32.

• Features:

– High-Level API: Provides abstractions for hardware interfaces, making code more
portable.

– RTOS: Built-in real-time operating system for multitasking.
– Connectivity: Integrated support for various connectivity protocols (e.g., Bluetooth,

Wi-Fi, Ethernet).
– Security: Built-in security features, including secure communication and secure

boot.
• Advantages:

– Ease of Use: Simplifies the process of writing complex applications with its
high-level API.

– Portability: Code written for MBed OS can be easily ported across different
hardware platforms.

– Community and Support: Strong community support with extensive documenta-
tion and examples.

– Online Compiler: Provides an online compiler for quick prototyping and develop-
ment.

VS Code with STM32 Extension:

Visual Studio Code (VS Code) is a lightweight, open-source code editor developed by Microsoft.
Recently, extensions have been developed to support STM32 development within VS Code,
such as the STM32 for VS Code extension.

• Features:

– Lightweight IDE: VS Code is known for being a lightweight and highly customizable
code editor.

– Extensions: The STM32 extension provides integration with STM32CubeMX,
debugging support, and code completion features.

– Cross-Platform: Available on Windows, macOS, and Linux.
– Integrated Terminal: Allows the use of command-line tools directly within the

editor.
• Advantages:

– Customization: Highly customizable environment with numerous available exten-
sions.

– Modern Editor: VS Code offers modern editing features, such as IntelliSense,
debugging, and Git integration.

– Flexibility: Can be used with different compilers and build systems.
Each tool offers unique benefits and caters to different aspects of STM32 development.
STM32CubeIDE provides a comprehensive, integrated solution directly from STMicroelectronics.
MBed OS simplifies IoT development with its high-level APIs and real-time operating system.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

6

https://doi.org/10.5281/zenodo.12700232

VS Code, with its modern, extensible nature, offers a flexible and lightweight development
environment suitable for a variety of use cases. Choosing the right tool depends on your
specific needs, project requirements, and personal preferences.

2.4 Choosing the IDE

In Chapter 2, we will learn how to use the Mbed Studio platform to develop our projects, while
in section 3, we will use STM32CubeIDE. While the former is an excellent tool that offers a
simplified environment for projects with fewer requirements and a "user-friendly" interface, the
latter allows for greater control over MCU programming and having a more flexible environment.
Additionally, STM32CubeIDE includes a specific package for AI applications, making it more
suitable for advanced projects that require additional functionalities. Here is a comparison
between both software platforms:

1. Advantages of STM32CubeIDE :

(a) Control and Flexibility: Provides greater control over MCU programming with a
wide range of configurations and customization options.

(b) Advanced Features: Support for specific packages for AI applications, advanced
graphics, and other high-complexity features.

(c) Advanced Debugging: Robust debugging tools, including support for breakpoints,
memory, and register inspection.

(d) Integration with STM32CubeMX: Facilitates peripheral and middleware config-
uration and initial code generation.

(e) Extensive Documentation and Community: Broad community support and
detailed documentation provided by STMicroelectronics.

2. Disadvantages of STM32CubeIDE :

(a) Learning Curve: Can be more complex with a steeper learning curve for beginners.
(b) System Requirements: Requires more system resources and can be heavier on

lower-spec machines.
(c) Initial Setup: Initial setup can be more time-consuming and complex due to

numerous available options and adjustments.
3. Advantages of Mbed Studio:

(a) Simplicity and Ease of Use: More simplified and user-friendly environment for
beginners with quick and easy initial setup.

(b) Ready Libraries and Components: Easy access to a vast library of components
and code examples that accelerate development.

(c) Cross-Platform: Supports a wide variety of boards and MCUs beyond STM32
products.

(d) Rapid Development: Ideal for rapid prototyping and projects that do not require
advanced functionalities.

(e) Online Environment: Available as an online platform, allowing development
without the need for local installation.

4. Disadvantages of Mbed Studio:

(a) Less Control: Offers less control and customization compared to STM32CubeIDE,
which can be limiting for complex projects.

(b) Limited Advanced Features: May not support some advanced features needed
for specific projects, such as AI applications or advanced graphics.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

7

https://doi.org/10.5281/zenodo.12700232

(c) Limited Debugging: Less robust debugging tools compared to STM32CubeIDE.

Chapter 2: Exploring MBed OS
As mentioned earlier, we will start with MBed OS, due to the points raised, so we will go
through the initial setup steps of the environment, basic examples of how to create your
projects, use sensors, interface them with the board, and perform communication protocols.

1. Installation and Setup
Before starting to program our MCU, we need to install our environment, the driver and update
the board, so:

1. Connect the board to your PC via one of the USB ports: USB-STLink. The simplest
way to power the board is by using the 5V from the USB. To do this, place a jumper on
JP4 on the 5V_ST_LINK pins in your board.

2. Then, install the necessary driver in your PC and restart it. This driver is available in:
� setup/en.stsw-link009.zip

3. Once the driver is installed, the board appears as a D drive in your PC. Open this drive
and check the Details.txt file. If the BIOS version seems outdated, it is preferable to
update it. To do this, download the file to update the board and run the executable.
When the window appears, click on Deviceconnect to verify the BIOS version. If the
BIOS version is older than the one provided, click on Yes>>>>> to update to the new
BIOS. The program is available in:

� setup/Bios_update_ST.zip

Figure 6: Updating the BIOS of the board.

4. Installation of Mbed Studio: This software is available at https://os.mbed.com/studio/
for Windows, Mac, and Linux. The installation is straightforward by executing the
provided program. Once installed, the software will prompt you to create an account to
use the programming environment. If it identifies outdated drivers or BIOS versions on
the board, it may ask you to authorize updates.

5. An alternative to installing Mbed Studio is using the Keil Arm online programming
interface, available at https://studio.keil.arm.com/. The same MBed account can be
used across all environments.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

8

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/setup/en.stsw-link009.zip
https://github.com/Mateushga1/AIoT-Guidebook/blob/main/setup/Bios_update_ST.zip
https://os.mbed.com/studio/
https://studio.keil.arm.com/
https://doi.org/10.5281/zenodo.12700232

2. Example Blinking a LED
Using the board involves running executable software on it. Therefore, applications need
to be developed in the form of executables for the board. This requires using a specific
development system, which interfaces with the MBed OS operating system running on the
ARM microcontrollers. This development system includes several sample source codes (in C
language) that can be easily modified to create a specific application.
We will implement a very simple first example: the blinking LED.

1. Start the software, create your account, and configure your working directory.
• Once this is done, all projects will be located in this directory.

2. Create a new project by importing an example program:
• Navigate to File -> New Program.
• A selection window will appear, choose mbed-os-example-blinky .

3. Configure the program:
• Next, you can give the project a name, such as mbed-LED1.
• Make the program active.
• For the first program, save the Mbed environment in your directory.

4. Click on ADD_PROGRAM to complete the setup.
The program appears on the right side of the environment. To make a project active later,
right-click on it and select SetActiveProgram. The name of the active program will then
appear in bold among the different projects.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

9

https://doi.org/10.5281/zenodo.12700232

You can open the corresponding code by clicking on the main.cpp file:
1 # include "mbed.h"
2

3 // Blinking rate in milliseconds
4 # define BLINKING_RATE 500 ms
5

6 int main ()
7 {
8 // Initialize the digital pin LED1 as an output
9 # ifdef LED1

10 DigitalOut led(LED1);
11 #else
12 bool led;
13 # endif
14

15 while (true) {
16 led = !led;
17 ThisThread :: sleep_for (BLINKING_RATE);
18 }
19 }

� chapter-2/mbed-LED1/main.cpp

led is an object of the DigitalOut class. LED1 is the name of the pin on the board, which is
passed to the DigitalOut constructor. LED1 and LED2 are green LEDs located between the
two USB interfaces, on the left and right respectively. LED3 is a yellow LED located below the
WiFi module on the left. LED4 is a blue LED at the bottom right, near the MEMS microphones.
The led object can take two binary values: ’1’ or ’0’. The MBed OS function sleep_for
allows the process to sleep for a specified time in milliseconds. The use of the while(true)
loop ensures that the main program runs indefinitely, which is necessary for embedded IoT
applications deployed in the field. Once turned on, the IoT device executes its main program
continuously.
To compile and download the code to the board, click on the compile icon. The first compilation
takes a long time because all the libraries are compiled. For subsequent compilations, only the
main program main.cpp will be recompiled. If you make significant modifications, you can
invoke the CleanBuild mode, which functions like the first compilation and takes a lot of
time.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

10

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/mbed-LED1/main.cpp
https://doi.org/10.5281/zenodo.12700232

Note that whenever you modify the configuration or environment files, the entire project needs
to be recompiled. Check that the LED blinks with a period of 1 second.
Now, let’s add a second LED and display a message at startup.

1 # include "mbed.h"
2

3 // Blinking rates in milliseconds
4 # define BLINKING_RATE 500 ms
5

6 int main () {
7 // Initialize the digital pins LED1 and LED2 as outputs
8 DigitalOut led1(LED1);
9 DigitalOut led2(LED2);

10 led1 =0 ; led2 =1 ;
11

12 // Display a message at startup
13 printf (" Starting LED blink program \n");
14

15 while (true) {
16 led1 = !led1;
17 led2 = !led2;
18 ThisThread :: sleep_for (BLINKING_RATE);
19 }
20 }

When the program starts, a new tab appears in the bottom right section of the tool, allowing
you to display the results of printf functions as shown below. You can extend this example
with LED3 according to your needs. The LEDs on the board can serve as a visual indicator for
the operation of the application being developed in the project.

� chapter-2/mbed-LED2/main.cpp

3. Example Using the Board’s Internal Sensors
The available development board already has several integrated sensors that are used to
showcase the various applications that can be performed using it. Therefore, we can use a
library to have easy access to the functionalities of these components or even a ready-made
complete project available on the Mbed website.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

11

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/mbed-LED2/main.cpp
https://doi.org/10.5281/zenodo.12700232

3.1 Importing a Complete Project

1. First, go to the official site: https://os.mbed.com/code/
2. In the search bar, type:

• ST BSP_B-L475E-IOT01
3. You will quickly find an official project from ST.

4. Copy the link address by right-clicking on it.

5. Then, go to the menu: File -> Import Program

6. Paste the previously copied address and click on Add Program.

Open the code of main.cpp. Read the main program for a better understanding of the
application.

1. You will find the importation of sensor reading libraries, the reading commands, and the
commands for sending to the serial port.

2. Compile the project and download it onto the board.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

12

https://os.mbed.com/code/
https://doi.org/10.5281/zenodo.12700232

3. You can check the value of the temperature, for example, and by positioning the board
on its sides, you can check the accelerations in X, Y, and Z.

� chapter-2/DISCO_L475VG_IOT01-Sensors-BSP/main.cpp

3.2 Starting from a Blank Project

This time, we will create an empty project and import all the necessary libraries.
1. Create a New Project:

• Go to File -> New Program, then choose mbed6 empty Mbed program, and
click on Add Program.

2. Add Internal Board Sensor Libraries:
• Return to https://os.mbed.com/code/.
• Click on the previously chosen project.
• At the top of the page, you will see a dependency on the BSP_B-L475E-IOT01

library.
• Right-click on the library name to copy its address.

• Import the library into the project by going to File -> Add Library to Active
Program.

• Paste the address into the window.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

13

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/DISCO_L475VG_IOT01-Sensors-BSP/main.cpp
https://os.mbed.com/code/
https://doi.org/10.5281/zenodo.12700232

• Click on Next and choose the default option.

• Click on Finish.
3. Add Code to the Program

• Copy the code found in chapter-2/internal-sensors/main.cpp into your
main.cpp.

• Compile and upload the program to the board.
4. See Results:

• You might notice that floating point numbers are not displayed correctly. This is
because by default, MBed OS 6 does not handle floating point printing to reduce
code size.

To enable this functionality:
1. Open the mbed_lib.json file in the path chapter-2/internal-sensors/mbed-os/

platform of your project.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

14

https://doi.org/10.5281/zenodo.12700232

2. Look for the section:
1 "minimal -printf -enable -floating - point ": {
2 "help": " Enable floating point printing when using minimal printf

library ",
3 " value ": false
4 }

3. Change "value":false to "value":true.
4. Recompile the entire project. Unfortunately, the system performs a complete recompi-

lation because a system file has been modified and that can take a while to finish, so
always pay attention to the configurations you want before compiling your project.

Now, you can verify that the floating point numbers are displayed correctly.

� chapter-2/internal-sensors

4. Sensors Tutorial
For this section, we will use a kit containing various sensors and components, which is extremely
useful for those starting in the world of microcontrollers due to the wide range of projects and
applications in which they can be used. But you can use your own sensor and components
that you have available.
This kit includes over twenty sensors (such as position, light, magnetic, and temperature
sensors) and around ten actuators (including LEDs, relays, buzzers, and lasers). Another
positive aspect of this kit is the availability of content on the internet regarding its use with
various other microcontrollers, which can serve as a foundation for your projects.
Types of Sensor Outputs:

Sensors can provide different types of outputs:
1. Analog Voltage: These sensors output a varying voltage and need to be connected to

ADC (Analog-to-Digital Converter) inputs.
2. Digital Signal: These sensors output a binary signal (high or low) and should be

connected to digital inputs.
Some more complex sensors communicate via serial communication, requiring the use of an
appropriate driver.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

15

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/schapter-2/internal-sensors
https://doi.org/10.5281/zenodo.12700232

4.1 List of Available Sensors and Actuators

Here is the list of available sensors and actuators (Table 1), along with the type of signal to
use. For actuators (A), the inputs are either digital (D) or PWM (Pulse Width Modulation).
For sensors (S), the information can be analog (A), digital (D), or more complex, in which
case the appropriate driver must be used.

ID Name Sens./Act. Input Output
1 Joystick module S AAD
3 Large microphone S AD
4 Small sound module S AD
5 Line Tracking module S D
6 Obstacle Avoidance module S D
7 Flame module S AD
8 Linear hall module S AD
9 Touch sensor S D (+A)
10 Digital temperature sensor S A
17 Reed switch module S D (+A)
18 Mini reed switch module S D
19 Heartbeat module S A
22 Button switch module S D
23 Vibration Shock module S D
24 Rotary encoders module S D (clock+sens)
26 Tilt switch module S D
27 Ball switch sensor S D
28 Photo-resistor module S A
29 Temp. and humidity module S driver
30 Hall effect sensor S A
31 Hall magnetic sensor module S D/A
32 Digital temperature module S driver (serial)
33 Analog temp module S
35 Infrared Receiver S D
36 Photo-interrupter module S D
37 HitSensor S D
25 Switch light module S/A
2 Relay module A D relay
11 Buzzer module A D
12 Passive buzzer A PWM
13 RGB LED module A PWM
14 SMD RGB module A PWM+resistor
15 Dual-color LED A PWM
16 Mini two-color module A PWM
20 7 color flash module A D
21 Laser module A D
34 IR emission A D

Table 1: List of available sensors and actuators.

Next, we will demonstrate the implementations of some of these sensors so that you have the
basic knowledge needed to create your own projects using them or the other ones.

4.2 Joystick Sensor

This sensor, as shown in Fig. 7, provides two analog voltages (joystick position in X/Y) and a
digital voltage (push button). The X and Y position signals should be connected to the A0
and A1 ports of the processor board, the Switch signal to the D8 input, and GND to ground.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

16

https://doi.org/10.5281/zenodo.12700232

However, the 5V signal should be connected to the 3.3V pin on the board. This is because the
analog-to-digital converter on the ST board operates between 0 and 3.3V. If powered with 5V,
the X and Y signals will exceed the allowed limit.

Figure 7: Joystick Sensor.

You can use the following program to test the joystick. This program displays the joystick’s
status every second and lights up the LED based on the push button status.

1 # include "mbed.h"
2

3 AnalogIn analog_value0 (A0);
4 AnalogIn analog_value1 (A1);
5

6 DigitalIn pb(D8);
7 DigitalOut led(LED1);
8

9 int main ()
10 {
11 float meas_r0 , meas_r1 ;
12 float meas_v0 , meas_v1 ;
13 int but;
14

15 printf ("\ nJoystick example \n\r");
16

17 while (1) {
18 meas_r0 = analog_value0 .read ();
19 // Read the analog input value (value from 0.0 to 1.0 = full ADC

conversion range)
20 meas_v0 = meas_r0 * 3300;
21 // Converts value in the 0V -3.3V range
22 meas_r1 = analog_value1 .read ();
23 // Read the analog input value (value from 0.0 to 1.0 = full ADC

conversion range)
24 meas_v1 = meas_r1 * 3300;
25 // Converts value in the 0V -3.3V range
26 but = pb;
27

28 // Display values
29 printf (" measure x= %f = %.0f mV y= %f = %.0f mV %d \n\r", meas_r0 ,

meas_v0 , meas_r1 , meas_v1 , but);
30

31 // LED is ON when the button is pushed
32 led = pb;
33

34 ThisThread :: sleep_for (1000 ms); // 1 second
35 }
36 }

� chapter-2/joystick-sensor/main.cpp

4.3 Multicolor LED

There are two LED modules available, one with a standard LED (Fig. 8(a)) and one with a
surface-mounted LED (Fig. 8(b)).

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

17

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/joystick-sensor/main.cpp
https://doi.org/10.5281/zenodo.12700232

(a) (b)

Figure 8: Multicolor LED: standard mounting (a) and surface mounting (b).

Connect the Red, Green and Blue inputs of the module to the D9, D10, and D11 outputs of
the board and ground to a ground point. The first program controls the Red, Green, and Blue
components of the LED separately. We have seven possible colors. In the provided program,
we alternately see black, the three primary colors, and white.

1 # include "mbed.h"
2

3 DigitalOut R(D9);
4 DigitalOut G(D10);
5 DigitalOut B(D11);
6

7 int main ()
8 {
9 printf ("\n\r LED example ON/OFF\n\r");

10

11 while (1) {
12 R = 0; G = 0; B = 0;
13 ThisThread :: sleep_for (1000 ms); // wait 1 second
14 R = 1; G = 0; B = 0;
15 ThisThread :: sleep_for (1000 ms); // wait 1 second
16 R = 0; G = 1; B = 0;
17 ThisThread :: sleep_for (1000 ms); // wait 1 second
18 R = 0; G = 0; B = 1;
19 ThisThread :: sleep_for (1000 ms); // wait 1 second
20 R = 1; G = 1; B = 1;
21 ThisThread :: sleep_for (1000 ms); // wait 1 second
22 }
23 }

The second program uses PWM generators to control the intensity of the three colors.
1 # include "mbed.h"
2

3 PwmOut R(D9);
4 PwmOut G(D10);
5 PwmOut B(D11);
6

7 int val;
8

9 int main ()
10 {
11 printf ("\n\r LED example with PWM\n\r");
12

13 while (1) {
14 R. write (0); G. write (0); B. write (0);
15 ThisThread :: sleep_for (1000 ms); // wait 1 second
16

17 for (val = 0; val <= 1000; val ++) {
18 R. write ((double)val / 1000.0) ;
19 ThisThread :: sleep_for (10 ms); // wait 0.01 second
20 }
21

22 for (val = 0; val <= 1000; val ++) {
23 G. write ((double)val / 1000.0) ;
24 ThisThread :: sleep_for (10 ms); // wait 0.01 second

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

18

https://doi.org/10.5281/zenodo.12700232

25 }
26

27 for (val = 0; val <= 1000; val ++) {
28 B. write ((double)val / 1000.0) ;
29 ThisThread :: sleep_for (10 ms); // wait 0.01 second
30 }
31

32 ThisThread :: sleep_for (1000 ms); // wait 1 second
33 }
34 }

� chapter-2/multicolor-LED-PWM/main.cpp

Exercise: Using the joystick and the LED, intelligently control (in a manner of your choosing)
the LED color using the joystick.

4.4 Humidity Sensor

Here is the connection for the humidity sensor illustrated in Fig. 9. Connect the signal pin
to the D4 port of the processor board. The signal is digital and contains temperature and
humidity information. As previously, start from an empty project.

Figure 9: Humidity sensor connection.

To use this sensor, we need a specific driver that we can retrieve from the environment. As
before, search for a library called DHT11 at https://os.mbed.com/code/.
The first result is suitable. Copy the link address.

Then add the library by navigating to File -> Add library to active program.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

19

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/multicolor-LED-PWM/main.cpp
https://os.mbed.com/code/
https://doi.org/10.5281/zenodo.12700232

As you can see, the project now contains the driver sources for this sensor. All that’s left is to
write the program, based on the DHT11.h driver header file.

The header provides a constructor that takes a pin name argument and three methods: readDat
a to read the sensor state, readHumidity to get humidity information, and readTemperature
to get temperature information.

The following program uses the driver and continuously displays the temperature and humidity
on the serial console.

1 # include "mbed.h"
2 # include " DHT11 .h"
3

4 DHT11 sensor (D4); // declare the sensor on pin D4
5

6 int main ()
7 {
8 int error = 0;
9 int h, t;

10

11 printf (" Starting \n\r");
12

13 while (1) {
14 ThisThread :: sleep_for (2000 ms);
15 error = sensor . readData ();
16 if (error == 0) {
17 t = sensor . readTemperature ();
18 h = sensor . readHumidity ();
19 printf (" Temperature is: %d \n\r", t);
20 printf (" Humidity is: %d \n\r", h);
21 } else {
22 printf (" Error : %d\n", error);
23 }
24 }
25 }

� chapter-2/humidity-sensor/main.cpp

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

20

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/humidity-sensor/main.cpp
https://doi.org/10.5281/zenodo.12700232

4.5 Appendix: Example Program to Control LEDs with the Joystick

� chapter-2/joystick-control

5. Connecting the Board to the Network via WIFI
In this section, we will establish the board’s connection to the internet using the integrated
WiFi module through socket communication using a TCP protocol. This communication will
be very useful for the next section, where we will integrate our project with the ThingSpeak
cloud server.

5.1 Data Transmission Standards

The connected device to be developed must be able to communicate with the Cloud (remote
server) via a telecommunications network. These data will then be accessible via the Cloud for
further processing by remote users.
There are several solutions for transmitting data from the STM32 board:

• Sigfox: Sigfox is a telecommunications operator for the Internet of Things. Commu-
nications between connected objects and the Cloud via this network are unidirectional,
with low data rates and very infrequent transmissions (140 messages per day). These
specificities/limitations are compatible with the operating criteria of most connected
objects. However, Sigfox is a paid service that only provides access to its network under
a subscription.

• LoRa: LoRa is another LPWAN (Low Power Wide Area Network) solution. Its commu-
nication protocol is similar to that of Sigfox except that communication is bidirectional.
The data rate is higher, and the number of messages per day is not limited. The major
difference between Sigfox and LoRa is that LoRa offers its services freely (free of charge).

• WiFi: The third solution, used in this project, involves using the WiFi module of the
STM32 board. In this project, the connected object is designed to transmit data from
its sensors (STM32 board) using the router present in the room as a WiFi access point
or possibly your smartphone. This solution does not have the advantages of LoRa and
Sigfox (long range), but it is straightforward to implement with STM32 boards.

The limitation imposed by the WiFi network (range: about twenty meters) is not to be taken
into account in your proposal for a connected object. It is essential to propose a functional
version of your solution (proof of concept) as well as a visual exploitation (graphical, data
analysis, statistics) of the data transmitted by the STM32 board.

5.2 Compilation and Launch

The following steps describe how to set up a communication routine from the board to an
HTTP server via a WiFi network. To start:

1. Launch the MBed application.
2. Define a new project (menu File, New program).
3. Choose the template mbed-os-example-sockets from the dropdown menu.
4. Rename your program if desired (Program Name).
5. You can use

the MBed environment from an existing project as shown in the following example,
which saves about 1GB per project.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

21

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/joystick-control
https://doi.org/10.5281/zenodo.12700232

The created project structure is shown in the next figure. It includes the subfolder COMPONENT
_ism43362 (driver for the WiFi chip on the STM32 board).

The mbed_app.json file (in the project’s root) is essential for WiFi communication. This
file contains the connection parameters. The WiFi SSID and the associated PASSWORD are
available in the project rooms (see the label on the WiFi routers) or you can use your own
routed connection from your phone. You need to modify the values of the fields nsapi.defau
lt-wifi-ssid and nsapi.default-wifi-password by entering the name of your network
and the associated password. This allows the STM32 board to connect to the internet via the
WiFi network available exclusively for the IoT project.

� chapter-2/wifi-connection-C++/source/main.cpp

You can compile the code as provided and verify that the connection is successful. The window
at the bottom of the application should return the following messages:

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

22

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/wifi-connection-C++/source/main.cpp
https://doi.org/10.5281/zenodo.12700232

As you can see, the code is written in C++ with embedded methods, which makes the code
not very easy to understand. We will replace the code with its version written in C.

� chapter-2/wifi-connection-C/source/main.cpp

5.3 General Code Routines (To Be Reused Everywhere)

Here are the details of the new code for understanding. It includes several "standard" routines
and application programs.
Inclusion of Necessary Headers

First, include the necessary headers for using MBed and WiFi, define a few constants, and
declare three global variables which are objects defining the network to use, the address of the
site to be addressed, and the socket which is the communication buffer with the site.

1 # include "mbed.h"
2 # include " wifi_helper .h"
3

4 static constexpr size_t MAX_NUMBER_OF_ACCESS_POINTS = 10;
5 static constexpr size_t MAX_MESSAGE_RECEIVED_LENGTH = 100;
6 static constexpr size_t REMOTE_PORT = 80; // standard HTTP port
7

8 NetworkInterface *net;
9 SocketAddress address ;

10 TCPSocket socket ;

WiFi Scan Routine

This first routine scans all available WiFi networks. It returns the number of available networks
as well as the information related to each network. This routine is optional.

1 void wifi_scan () {
2 WiFiInterface *wifi = net -> wifiInterface ();
3 WiFiAccessPoint ap[MAX_NUMBER_OF_ACCESS_POINTS];
4 /* scan call returns number of access points found */
5 int result = wifi ->scan(ap , MAX_NUMBER_OF_ACCESS_POINTS);
6 if (result <= 0) {
7 printf (" WiFiInterface :: scan () failed with return value : %d\r\n",

result);
8 return ;
9 }

10 printf ("%d networks available :\r\n", result);
11 for (int i = 0; i < result ; i++) {
12 printf (" Network : %s secured : %s BSSID : %hhX :% hhX :% hhX :% hhx :% hhx :%

hhx RSSI: %hhd Ch: %hhd\r\n",
13 ap[i]. get_ssid () , get_security_string (ap[i]. get_security ()),
14 ap[i]. get_bssid () [0] , ap[i]. get_bssid () [1] , ap[i]. get_bssid

() [2] ,
15 ap[i]. get_bssid () [3] , ap[i]. get_bssid () [4] , ap[i]. get_bssid

() [5] ,

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

23

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/wifi-connection-C/source/main.cpp
https://doi.org/10.5281/zenodo.12700232

16 ap[i]. get_rssi () , ap[i]. get_channel ());
17 }
18 printf ("\r\n");
19 }

Resolve Hostname Routine

The following routine resolves a network name, i.e., retrieves the IP address from the site’s
name. The address is directly placed in the global variable address.

1 bool resolve_hostname (char * hostname) {
2 /* get the host address */
3 printf ("\ nResolve hostname %s\r\n", hostname);
4 nsapi_size_or_error_t result = net -> gethostbyname (hostname , & address);
5 if (result != 0) {
6 printf (" Error ! gethostbyname (%s) returned : %d\r\n", hostname ,

result);
7 return false ;
8 }
9 printf ("%s address is %s\r\n", hostname , (address . get_ip_address () ?

address . get_ip_address () : "None"));
10 return true;
11 }

Print Network Info Routine

This routine returns information about the network to which you will connect. To use this
routine, you must have previously defined the address using resolve_hostname.

1 void print_network_info () {
2 /* print the network info */
3 SocketAddress a;
4 net -> get_ip_address (&a);
5 printf ("IP address : %s\r\n", a. get_ip_address () ? a. get_ip_address () :

"None");
6 net -> get_netmask (&a);
7 printf (" Netmask : %s\r\n", a. get_ip_address () ? a. get_ip_address () : "

None");
8 net -> get_gateway (&a);
9 printf (" Gateway : %s\r\n", a. get_ip_address () ? a. get_ip_address () : "

None");
10 }

5.4 The Application

The proposed application in this example is divided into three parts: two routines for making
requests and reading from a site, and a main program that chains all the operations together.
Sending an HTTP Request:

The first routine sends an HTTP request.
1 bool send_http_request () {
2 /* loop until whole request sent */
3 const char buffer [] = "GET / HTTP /1.1\ r\n"
4 "Host: ifconfig .io\r\n"
5 " Connection : close \r\n"
6 "\r\n";
7 nsapi_size_t bytes_to_send = strlen (buffer);
8 nsapi_size_or_error_t bytes_sent = 0;
9

10 printf ("\r\ nSending message : \r\n%s", buffer);
11 while (bytes_to_send) {
12 bytes_sent = socket .send(buffer + bytes_sent , bytes_to_send);
13 if (bytes_sent < 0) {
14 printf (" Error ! socket .send () returned : %d\r\n", bytes_sent);

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

24

https://doi.org/10.5281/zenodo.12700232

15 return false ;
16 } else {
17 printf ("sent %d bytes \r\n", bytes_sent);
18 }
19 bytes_to_send -= bytes_sent ;
20 }
21 printf (" Complete message sent\r\n");
22 return true;

Receiving the HTTP Response:

The following routine receives the response.
1 bool receive_http_response () {
2 char buffer [MAX_MESSAGE_RECEIVED_LENGTH];
3 int remaining_bytes = MAX_MESSAGE_RECEIVED_LENGTH ;
4 int received_bytes = 0;
5 /* loop until there is nothing received or we 've ran out of buffer

space */
6 nsapi_size_or_error_t result = remaining_bytes ;
7 while (result > 0 && remaining_bytes > 0) {
8 result = socket .recv(buffer + received_bytes , remaining_bytes);
9 if (result < 0) {

10 printf (" Error ! socket .recv () returned : %d\r\n", result);
11 return false ;
12 }
13 received_bytes += result ;
14 remaining_bytes -= result ;
15 }
16 /* the message is likely larger but we only want the HTTP response code

*/
17 printf (" received %d bytes :\r\n%.*s\r\n\r\n", received_bytes , strstr (

buffer , "\n") - buffer , buffer);
18 return true;
19 }

5.5 General Part of main.cpp

The beginning is relatively general as it performs network connection operations.
1 int main () {
2 printf ("\r\ nStarting socket demo\r\n\r\n");
3 // Get the default network interface instance
4 net = NetworkInterface :: get_default_instance ();
5 if (! net) {
6 printf (" Error ! No network interface found .\r\n");
7 return -1;
8 }
9

10 // If a WiFi interface is available , perform a quick network scan
11 // to display visible access points
12 // Comment out the code if it blocks at this step
13 if (net -> wifiInterface ()) {
14 wifi_scan ();
15 }
16

17 // Connect to the network
18 printf (" Connecting to the network ...\r\n");
19 nsapi_size_or_error_t result = net -> connect ();
20 if (result != 0) {
21 printf (" Error ! net -> connect () returned : %d\r\n", result);
22 return -1;
23 }
24

25 // Display network information (IP address , netmask , and gateway)
26 print_network_info ();
27

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

25

https://doi.org/10.5281/zenodo.12700232

28 // Check if the host can be found on the network
29 char host [] = " ifconfig .io";
30 if (! resolve_hostname (host)) {
31 return -1;
32 }
33

34 // Open the socket to allocate necessary resources
35 result = socket .open(net);
36 if (result != 0) {
37 printf (" Error ! socket .open () returned : %d\r\n", result);
38 return -1;
39 }
40

41 // Set the port to use for the connection
42 address . set_port (REMOTE_PORT);
43

44 // Now we need to open a connection via a socket
45 printf (" Opening connection to remote port %d\r\n", REMOTE_PORT);
46 result = socket . connect (address);
47 if (result != 0) {
48 printf (" Error ! socket . connect () returned : %d\r\n", result);
49 return -1;
50 }
51 }

5.6 Specific Part of main.cpp

This last part is specific to the application. Here we call the two routines send_http_request
and receive_http_response.

1 // Now we can send a request and receive an HTTP response
2 if (! send_http_request ()) {
3 return -1;
4 }
5 if (! receive_http_response ()) {
6 return -1;
7 }
8 // End of demonstration
9 printf ("Demo concluded successfully \r\n");

10 return 0;
11 }

After compiling your main.cpp, download the executable of the program into the program
memory space of your STM32 board. You can view the result printed by printf using the
communication window of MBed Studio, which will show either the transfers made or the
characteristics of your TCP-IP link (IP address, MAC, gateway).

6. Getting Started with ThingSpeak
In this final step, we will update our previous code to establish communication with ThingSpeak,
allowing us to remotely visualize the sensor data graphically, thus opening up new possibilities
for your projects.

6.1 Setting Up a Data Collection Server (Cloud)

There are several IoT platforms dedicated to data collection. The most popular ones are Google
Cloud IoT Core, Amazon AWS IoT Core, and IBM Watson IoT Platform. Access to these
platforms’ services is paid, and the free offers they provide are limited in time. These three
solutions are easy to implement and adopted by a large community, and they have abundant
literature of usage examples.
The ThingSpeak platform by MathWorks and Ubidots are alternatives to the first three. The
capabilities offered by these two solutions are sufficient for the scale of your project. The

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

26

https://doi.org/10.5281/zenodo.12700232

following describes the setup of the ThingSpeak solution.
ThingSpeak is an open data platform for the Internet of Things. Your device or application
can communicate with ThingSpeak using a RESTful API (Fig. 10). You can either keep
your data private or make it public. Moreover, you can use ThingSpeak to analyze and act
on your data. ThingSpeak provides an online text editor for analyzing and visualizing data
using MATLAB (also by MathWorks). You can also perform actions such as running regularly
scheduled MATLAB code or sending a tweet when your data exceeds a defined threshold. The
platform’s advantages lie in performing more complex operations on datasets (via MATLAB
tools) and more advanced customization of visualized graphs. Using such a platform can be
relevant if you want to perform complex processing of received raw data, and this for free.
At the heart of ThingSpeak is a time-series database. ThingSpeak provides users with free
storage of time-series data in channels. Each channel can include up to eight data fields.

Figure 10: Description of the communication structure via ThingSpeak.

To use ThingSpeak, follow these steps:
1. Go to the website: https://thingspeak.com/
2. Create an account (it’s the same account as MATLAB if you have one).
3. After creating the account, create a Channel (click New Channel) in the Channels/My

Channels menu. This will store your transmitted data.

4. Specify your Channel attributes:
• Name: StmWifi (in the chosen example below)
• Fill in the Field fields with the names of the variables used (e.g., CaptX, CaptY, etc.),

field1: CaptX, field2: CaptY, among others according to your sensors/application.
• Specify if your Channel is public or private (data confidentiality).
• Save your Channel by clicking Save Channel.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

27

https://thingspeak.com/
https://doi.org/10.5281/zenodo.12700232

5. Identify your API Key (API keys menu of your channel). This key is necessary for any
communication with the configured Channel on the ThingSpeak platform. The Write
API Key will send information from the STM32 board to the channel, and the Read API
Key will retrieve data/instructions to the board. These keys are uniquely associated with
the connected object you created on the ThingSpeak platform.

6. The configuration of your ThingSpeak storage channel (Cloud) is complete. The next
steps continue on MBed OS to create your program that will run on the STM32 board.

6.2 Creating the Main Communication File

In Chapter 3, you created a project allowing the board to connect to the WIFI network. You
will start from this project and complete it. The following describes the steps necessary to
develop a communication routine with ThingSpeak via a Wifi network.
You will modify the main.cpp file as follows:
At the beginning of the project, add:

• The read and write access keys to your ThingSpeak channel.
• Analog inputs analog_value0 and analog_value1.
• Buffers for communication (character arrays).
• Variables that contain sensor data (here potentiometers).

1 NetworkInterface *net;
2 SocketAddress address ;
3 TCPSocket socket ;
4

5 # define thingspeak_APIkey_write " GS80MF8P8K3S5DD4 " // put your channel 's
write API key

6 # define thingspeak_APIkey_read " QEM41UTCNZQ03M0E " // put your channel 's
read API key

7

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

28

https://doi.org/10.5281/zenodo.12700232

8 AnalogIn analog_value0 (A0);
9 AnalogIn analog_value1 (A1);

10

11 nsapi_error_t response ;
12

13 char sbuffer [256];
14 char message [64];
15 float captX ;
16 float captY ;
17 float captZ ;

The following part of main.cpp does not change. Resume from the moment of defining the
site’s address as follows:

1 char hostname [] = "api. thingspeak .com";
2 if (! resolve_hostname (hostname)) {
3 return -1;
4 }
5 address . set_port (REMOTE_PORT);

Then enter an infinite loop. Start by opening a socket and connecting to the ThingSpeak site
address:

1 while (true) {
2 // We now need to open a connection to a socket
3 result = socket .open(net);
4 if (result != 0) {
5 printf (" Error ! socket .open () returned : %d\r\n", result);
6 return -1;
7 }
8 printf ("\r\n\r\ nOpening connection to remote port %d\r\n", REMOTE_PORT)

;
9 result = socket . connect (address);

10 if (result != 0) {
11 printf (" Error ! socket . connect () returned : %d\r\n", result);
12 return -1;
13 }

Read the value provided by the sensors:
1 captX = analog_value0 .read ();
2 captY = analog_value1 .read ();
3 captZ = 0;

Create a message from the previous data to send to ThingSpeak:
1 // message to be transmitted (sensor data)
2 sprintf (message , "{\" field1 \": %0.2f, \" field2 \": %0.2f, \" field3 \": %0.2

f}", captX , captY , captZ);
3 printf (" Message = %s\r\n", message);
4 // Data transmission phase to ThingSpeak .com
5 sprintf (sbuffer , "GET / update ? api_key =%s HTTP /1.1\ r\ nHost : api. thingspeak

.com\r\nContent -Type: application /json\r\nContent - Length : %d\r\n\r\n%s
", thingspeak_APIkey_write , (int) strlen (message), message);

6 printf ("HTTP command %s\r\n", sbuffer);

Then verify that the request was received successfully:
1 printf (" Sending HTTP request to thingspeak .com ...\n");
2 nsapi_size_t size = strlen (sbuffer);
3 response = 0;
4 while (size) {
5 response = socket .send(sbuffer + response , size);
6 if (response < 0) {
7 printf (" Error sending data: %d\n", response);
8 socket . close ();

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

29

https://doi.org/10.5281/zenodo.12700232

9 return -1;
10 } else {
11 size -= response ;
12 }
13 }
14 printf (" request sent to thingspeak .com ...\n");

Next, wait to receive the response from the ThingSpeak site and display the received response:
1 // Receive a simple HTTP response and print out the response line
2 char rbuffer [64];
3 response = socket .recv(rbuffer , sizeof rbuffer);
4 if (response < 0) {
5 printf (" Error receiving data: %d\n", response);
6 } else {
7 printf ("recv %d [%.*s]\n", response , strstr (rbuffer , "\r\n") -

rbuffer , rbuffer);
8 }

Finally, close the socket and sleep for 5 seconds:
1 // Close the socket to return its memory and bring down the network

interface
2 socket . close ();
3 ThisThread :: sleep_for (5000 ms); // wait for 5 seconds
4 }
5 net -> disconnect ();
6

7 return 0;
8 }

You can now compile your code and execute it. You can view the result printed by printf in
the communication window, either the transfers made or the characteristics of your TCP-IP
link (IP address, MAC, gateway).

Furthermore, your data can be directly viewed through the ThingSpeak interface.

For advanced data processing, you will find a set of tools in the MATLAB Analysis and

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

30

https://doi.org/10.5281/zenodo.12700232

MATLAB Visualization categories. Before going further in your project, modify the API to
retrieve data from ThingSpeak to the STM32 board.

� chapter-2/cloud-connection/source/main.cpp

Chapter 3: Introduction to STM32CubeIDE
The integrated development environment (IDE) developed by STMicroelectronics previously
consisted of several separate software tools, such as STM32CubeIDE for writing code,
STM32CubeMX for configuring the microcontroller, and STM32CubeProgrammer for program-
ming and debugging it. Today, all these tools are integrated into STM32CubeIDE, simplifying
the product line and creating a single tool capable of performing all the necessary tasks to
develop your project.
In this section, we will discuss the basic configurations of a project using STM32CubeIDE, as
it has a completely different interface from MBed OS. Additionally, we will use the second
board mentioned earlier, the B-U585I-IOT02A, to prepare for the following chapters where we
will need a board with greater processing power and memory. We will initially demonstrate a
simple project and then create a TCP communication protocol with the ThingSpeak server.

1. The Basics of STM32CubeIDE
For this first example, we will simply make an LED blink. Although simple, this example will
be very useful for any other project configuration you might undertake. Follow these steps:

1. Download and install the latest version of the software (install directly on your C: drive,
before the users folder to avoid path issues in your projects): STM32CubeIDE Download.

2. Open STM32CubeIDE. A window will appear for you to choose your workspace directory.
Just click Launch to use the default.

3. Create a new project via File -> New -> STM32 Project.

4. A new window will appear for you to name your project and choose some other options.
Name it as you wish and leave the rest as default, especially the choice of the C language.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

31

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-2/cloud-connection/source/main.cpp
https://www.st.com/en/development-tools/STM32CubeIDE.html
https://doi.org/10.5281/zenodo.12700232

5. Next, we need to select whether we are configuring only a microcontroller or an STMi-
croelectronics board that already has some peripherals. Since we are working with the
B-U585I-IOT02A, we will select it in the Board Selector and search for its part number.
After clicking Finish, you will be asked if you would like to initialize the peripherals of your
board. Click Yes to pre-configure the various modules connected to the microcontroller’s
pins, making our work easier as we won’t have to define them one by one.

6. You will then see your development environment, with the central window being the
STM32CubeMX showing your microcontroller chip and its pins.

As stated by STMicroelectronics, “STM32CubeMX is a graphical tool that allows a very easy
configuration of STM32 microcontrollers and microprocessors, as well as the generation of the
corresponding initialization C code for the Arm® Cortex®-M core or a partial Linux® Device
Tree for Arm® Cortex®-A core, through a step-by-step process.”
This software is used to graphically configure pins, timers, clocks, connection types, communi-
cation protocols, and pre-installed packages, among many other functions found on the left

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

32

https://doi.org/10.5281/zenodo.12700232

side of the window, as shown in the image below.

After this pre-configuration, it is possible to generate partially written code containing the
initializations for all selected peripherals, defined pins, and necessary libraries, making the
creation of your projects much easier as you won’t need to write each line manually and can
focus on the main part of your code.
When we created our project, all peripherals were initialized, which is why some pins are already
pre-configured (green pins).

Now, let’s start configuring our microcontroller so we can use what we define here in our code.
1. For our first example of blinking an LED present on the board, we would define one of

the microcontroller pins as output and name it to make it easier to read in our code.
However, since we initialized these components, the LED is already configured on pin
PH6 (left-click on the pin to access these definitions), as well as its label (right-click on
the pin and select Enter User Label), which you can change to whatever name you
want.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

33

https://doi.org/10.5281/zenodo.12700232

2. Now we will configure the clock of our microcontroller, which will be used by many of
its tools. To do this, select the top Clock Configuration tab. The large amount of
information in this window may seem overwhelming initially, but we will only modify
a few parameters. First, select the High-Speed Internal Clock (HSI) in the PLL
Source Mux, set HCLK (MHz) to the maximum allowed (160 MHz), press Enter, and
wait for the software to find the best solution for your configuration, which should look
similar to the values on the right in the photo below (red box 4).

3. After this, we can save our project with Ctrl + S or File -> Save, and a window
will appear asking if you would like to generate the automatic code for your configu-
rations. Click Yes. If this window does not appear, you can also click on the Device
Configuration Tool Code Generation item in the toolbar at the top of the screen.

The STM32CubeIDE can auto-generate parts of your code based on the configuration you did
previously in STM32CubeMX, such as if a pin is an output or input, the type of communication
used, and many other parameters. The generated code includes various comments defining
the safe zones for users to write their code, which are delimited by USER CODE BEGIN and
USER CODE END, as shown in the image below where these areas were highlighted. If the user
writes outside these zones, regenerating the code will retain only the lines within the safe
zones, and the rest will be deleted. Therefore, always write within the designated areas, which
is not difficult as there are multiple such areas in different parts of the code.

Now, just add the necessary code in these safe zones. To make the LED blink, place the
following lines inside the loop of the while present in main():

1 /* Infinite loop */
2 /* USER CODE BEGIN WHILE */
3 while (1)
4 {
5 /* USER CODE END WHILE */
6 HAL_GPIO_TogglePin (LED_RED_GPIO_Port , LED_RED_Pin);

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

34

https://doi.org/10.5281/zenodo.12700232

7 HAL_Delay (1000) ;
8 /* USER CODE BEGIN 3 */
9 }

10 /* USER CODE END 3 */

Finally, build your project in Project -> Build Project and then upload it to the board.
Connect the board to your computer and then go to Run -> Run and observe the red LED
blinking on your board. You can also implement the green LED in your project, as it is already
configured.
As mentioned earlier, STM32CubeIDE is not very “beginner-friendly” due to the numerous
functions, configurations, and parameters without simplified explanations. However, it is
a powerful tool that allows full control over the microcontroller used, without needing to
work directly with registers, and can speed up the coding process due to the automatic code
generation.
For more in-depth information and a simpler, straightforward language, I strongly recommend
Mitch Davis’s YouTube channel, especially the video STM32 Guide #2: Registers + HAL
(Blink example), along with other videos in the same series.
You can also access the STM32CubeIDE Documentation for more technical details about the
software.
Here is the folder of this project:

� chapter-3/B-U585I-IOT02A_blink_led

2. Timer and Trigger Management in STM32CubeIDE Projects
In embedded systems, especially when working with microcontrollers like the STM32, under-
standing timers and triggers is crucial. Timers are integral components that allow microcon-
trollers to perform operations at precise intervals, which is essential for tasks such as creating
delays, measuring time intervals, generating PWM signals, and managing time-sensitive events.

2.1 Understanding STM32 Timers and Triggers

Timers:

Timers in microcontrollers are essentially counters that increment or decrement at a specific
frequency, derived from the system clock. The STM32 microcontrollers feature multiple timers,
each with unique capabilities and configurations. The key parameters and features of timers
include:

1. Counter Mode: Timers can operate in different modes such as up-counting, down-
counting, or center-aligned mode. In up-counting mode, the timer counts from 0 to a
predefined value, while in down-counting, it counts down to 0. Center-aligned mode
combines both, which is useful for PWM generation.

2. Prescaler: The prescaler divides the system clock to slow down the timer frequency. This
allows for more extended timing intervals and precise control over the timer’s operation.

3. Auto-Reload Register (ARR): This register determines the period of the timer. When
the counter reaches the value in the ARR, it resets to 0 (or the predefined start value),
triggering an event if configured.

4. Interrupts: Timers can generate interrupts when they reach specific values, such as the
overflow or underflow points. These interrupts can be used to execute specific functions
at regular intervals, essential for time-critical applications.

Triggers:

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

35

https://www.youtube.com/watch?v=Hffw-m9fuxc&list=WL&index=30
https://www.youtube.com/watch?v=Hffw-m9fuxc&list=WL&index=30
https://www.st.com/en/development-tools/STM32CubeIDE.html#documentation
https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-3/B-U585I-IOT02A_blink_led
https://doi.org/10.5281/zenodo.12700232

Triggers are signals or events that cause the timer to start, stop, reset, or capture the current
counter value. In the STM32 microcontrollers, various trigger sources can be used to control
timers:

1. Internal Triggers: These are signals generated within the microcontroller, such as other
timers or specific events from peripherals like ADCs or DACs. For instance, Timer 1 can
trigger Timer 2, creating synchronized events between different timers.

2. External Triggers: These come from external pins or hardware events outside the
microcontroller. An external button press, for instance, can start or reset a timer.

3. Software Triggers: The timer can also be controlled programmatically through software
commands. This is useful for precise control over the timing without relying on external
events.

Practical Applications:

• Delay Generation: Timers can create precise delays by configuring the counter and
using interrupts to execute code at set intervals.

• PWM Generation: Timers are often used to generate PWM signals for motor control,
LED dimming, and communication protocols.

• Event Timing: Timers can measure the time between events, which is crucial in
applications requiring precise time measurements, such as pulse width measurement.

• Periodic Task Execution: Using timer interrupts, tasks can be executed periodically,
essential for real-time operating systems and other time-critical applications.

To grasp the fundamentals of STM32 timers and their configurations, refer to the following
resources:

• Getting Started with STM32 and Nucleo Part 6: Timers and Timer Interr
upts

• STM32 Timers Tutorial - Deep Blue Embedded

2.2 Configuring STM32 Timers in STM32CubeMX

STM32CubeMX is a graphical tool that simplifies configuring STM32 microcontrollers, includ-
ing timers. Follow these steps to configure timers for your project:
Step-by-Step Configuration:

1. Open STM32CubeMX: Launch STM32CubeMX and start a new project or open an
existing one.

2. Select Timer Peripheral: Navigate to the “Timers” tab and choose the timer peripheral
you intend to configure (e.g., TIM6).

3. Configure Timer Parameters:
• Clock Source: Select the source for the timer clock (e.g., internal clock, external

clock).
• Prescaler: Set the prescaler value to adjust the timer’s counting frequency.
• Mode and Configuration: Choose the desired operating mode (e.g., PWM

Generation, Capture/Compare).

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

36

https://youtu.be/VfbW6nfG4kw?si=4GEUskWYxO0k2GLK
https://youtu.be/VfbW6nfG4kw?si=4GEUskWYxO0k2GLK
https://deepbluembedded.com/stm32-timers-tutorial-hardware-timers-explained/
https://doi.org/10.5281/zenodo.12700232

4. Pinout and Configuration: Assign pins associated with timer functions (e.g., PWM
output pins).

5. Generate Code: Once configurations are complete, click Project, then Generate Code
to generate initialization code based on your settings.

2.3 PWM Signal Generation Example

Pulse Width Modulation (PWM) signals are a fundamental feature in microcontroller appli-
cations, particularly when precise control over power delivery or signal generation is required.
PWM signals are essentially digital signals that alternate between on and off states at a
high frequency. The key parameter in a PWM signal is the duty cycle, which represents the
proportion of time the signal is high (on) compared to the total period of the cycle.

PWM Configuration Steps:

Configuring PWM signals on STM32 microcontrollers using STMCubeMX is a straightforward
process. First, you need to select the appropriate timer that will generate the PWM signals.
STM32 microcontrollers typically come with several timers, each capable of generating multiple
PWM signals (you must see in the datasheet which pin can be configured as PWM generator,
because this can change from each MCU).
Once you have selected the timer, the next step is to configure the PWM channels. In
STMCubeMX, navigate to the timer configuration settings and enable the PWM mode for the
desired channels. Here, you can specify the frequency of the PWM signal by setting the timer’s
prescaler and auto-reload register (ARR) values. The frequency is determined by the formula:

PWM Frequency = Timer Clock
(Prescaler + 1) × (ARR + 1)

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

37

https://doi.org/10.5281/zenodo.12700232

After setting the frequency, you can configure the duty cycle for each PWM channel. The duty
cycle is set by adjusting the compare register (CCR) value for each channel. The duty cycle
percentage is calculated as follows:

Duty Cycle (%) =
(

Compare Value
ARR

)
× 100

For example, if the ARR is set to 999 and the compare value is set to 499, the duty cycle will
be 50%.
Here is a simple configuration of a Timer as a PWM generator:

• Configure TIM3 or another suitable timer to operate in PWM mode with CH1 (and also
CH2 in the configuration below).

• In Configuration, set the parameters you need for your application.

• Generate initialization code and integrate it into your project.
For a detailed walkthrough of configuring and using PWM with STM32 timers, follow this
example:

• STM32 PWM Example - Deep Blue Embedded

2.4 Handling PWM Signals with Deadtimes

Deadtimes are essential in many applications involving switching devices, such as in PWM
generation for motor control or power inverters. Deadtime refers to a brief delay introduced
between the turning off of one transistor and the turning on of another in switching circuits.
This delay prevents two switches from being on simultaneously, which could lead to a direct
short circuit through the power supply, potentially damaging the components or reducing their
lifespan due to excessive current.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

38

https://deepbluembedded.com/stm32-pwm-example-timer-pwm-mode-tutorial/
https://doi.org/10.5281/zenodo.12700232

Configuring Deadtimes:

• In STM32CubeMX, navigate to the timer configuration.
• Locate the deadtime settings under PWM Generation mode.
• Set appropriate deadtime values to ensure safe operation of your PWM-driven systems.

You can also see this tutorial from STMicroelectronics on how to configure deadtimes in you
projects using a complementary PWM mode:

• Hands-On with STM32 Timers: Dead-time Insertion in Complementary PWM
Output

3. Connecting to ThingSpeak
In this section, we will demonstrate an application where a TCP/IP protocol is implemented
between the board, which contains an integrated WiFi module, and the ThingSpeak server.
This enables online data visualization and processing using MATLAB, similar to how it was
used in section 6 of Chapter 2.
We will start with a project created by STMicroelectronics available on the following
GitHub link: https://github.com/STMicroelectronics/STM32CubeU5.
In the mentioned repository, you will find the Readme which outlines the correct method
for downloading the file. If this procedure is not followed correctly, you will not be able to
build your project due to version and file location issues. Following the procedure, you should
clone the repository using the following command in the terminal within your STM32CubeIDE
project folder. Choose the location carefully, as projects created with STM32CubeIDE cannot
simply be copied, pasted, or moved due to the need for correctly defined file paths:

1 git clone --recursive https :// github .com/ STMicroelectronics / STM32CubeU5 .
git

Additionally, we must use the most updated firmware version available at the moment, which
for me is v1.5.0. This can be verified in the Release Notes for STM32CubeU5 Firmware
Package. Replace X.Y.Z with your version and run this command inside the STM32CubeU5
folder you just cloned:

1 git checkout vX.Y.Z # Specify the targeted vX.Y.Z version

In the STM32CubeU5 repository, there are examples and demonstration projects using all U5
series boards developed by STMicroelectronics, applying various libraries and integrated
modules of the boards. One of these projects utilizes the MXChip WiFi module on the
B-U585I-IOT02A for TCP/IP communication with a server.
We will use this base project, modifying the server to ThingSpeak and sending a fixed value
that can be visualized on the website. The project is located in the following path in the folder

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

39

https://www.youtube.com/watch?v=rDaC2N-33Oo
https://www.youtube.com/watch?v=rDaC2N-33Oo
https://github.com/STMicroelectronics/STM32CubeU5/tree/main
https://htmlpreview.github.io/?https://github.com/STMicroelectronics/STM32CubeU5/blob/master/Release_Notes.html
https://htmlpreview.github.io/?https://github.com/STMicroelectronics/STM32CubeU5/blob/master/Release_Notes.html
https://doi.org/10.5281/zenodo.12700232

where you downloaded it: STM32CubeU5/Projects/B-U585I-IOT02A/Applications/NetX
Duo/Nx_UDP_Echo_Client.
We will not provide the complete project due to the mentioned issue of file path incompatibility,
but we will include the files that will be modified in the following folder:

� chapter-3/STM32CubeU5

3.1 Updating the WiFi Module Firmware

Before starting the project, you need to update the firmware of the EMW3080 module, the MXChip
WiFi module on our board, to version 2.3.4 found here: setup/en.x-wifi-emw3080b.zip.
Download the file and follow these steps:

1. Extract the file.
2. Navigate to en.x-wifi-emw3080b\V2.3.4\SPI\EMW3080update_B-U585I-IOT02A-

RevC_V2.3.4_SPI.bin.
3. Connect your B-U585I-IOT02A board to your computer via USB.
4. Drag the file to the disk drive that appears on your computer upon connecting the board.

In my case, it is DIS_U585AI.
5. Open a serial terminal, such as PuTTY or the MBed terminal used earlier, with the

following settings: baud rate 115200 bits/s, 8-bit data, no parity, 1 stop bit, no flow
control (some programs only require the baud rate, like MBed).

6. Restart the board by pressing the black button and monitor the terminal to see if the
firmware enters boot mode.

7. You will see a message similar to the one below (if you don’t see it, reinitialize your
terminal and after do the same to the board). Simply press the blue user button on the
board and wait for the update to apply. It might take a while to initialize, so be patient.

Now, your module’s firmware is updated, and you can proceed with the tutorial.

3.2 Understanding the Base Project and Its Configurations

Before modifying the original project for our application, let’s first understand how it works.
We can add the project to our STM32CubeIDE by navigating to Projects/B-U585I-IOT02
A/Applications/NetXDuo/Nx_UDP_Echo_Client/STM32CubeIDE and double-clicking the
.cproject file or by going to STM32CubeIDE, selecting File -> Open project from file
system, navigating to the directory containing the .cproject file, and clicking Finish.
The Nx_TCP_Echo_Client application serves as a practical example of utilizing the Azure
RTOS NetX/NetXDuo stack to create a TCP client that communicates with a remote server.
This example is structured to help developers understand the implementation of TCP/IP
communication in an embedded system using STM32 microcontrollers.
Overview of the Project:

By opening the .ioc file, which is the STM32CubeMX configuration file for graphical pin and
peripheral configuration, or simply examining the files in the project folders, you will notice
the use of two main packages. These packages bring various functionalities and libraries to

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

40

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-3/STM32CubeU5
setup/en.x-wifi-emw3080b.zip
https://doi.org/10.5281/zenodo.12700232

the project, enabling the implementation of diverse applications. The packages used here are
ThreadX and NetXDuo, where the latter depends on the former to function properly.
ThreadX is a real-time operating system (RTOS) designed for embedded systems. It provides
essential services such as thread management, inter-thread communication, and synchronization,
ensuring efficient task execution and resource management.
NetX/NetXDuo is a high-performance TCP/IP network stack tailored for ThreadX. It
facilitates robust network communication in embedded applications, supporting both IPv4 and
IPv6 protocols. NetXDuo extends the capabilities of NetX with enhanced features.
This project integrates ThreadX and NetX/NetXDuo to create a TCP echo client. It demon-
strates how these components can be effectively utilized to develop sophisticated networked
applications on STM32 microcontrollers. The objective is to implement a TCP client that
sends messages to a server and receives corresponding responses, which are then printed on a
terminal.
The main codes for this application that we will analyze are the ones present in:

• Nx_TCP_Echo_Client/Core/Inc/app_threadx.h
• Nx_TCP_Echo_Client/NetXDuo/App/app_netxduo.c

As you can see, all the implemented code will be done outside of main.c since we will be
working with threads. The code for the threads can be implemented in app_threadx.c or
app_netxduo.c. This is evident from the image below, where once the code reaches main(),
the function MX_ThreadX_Init() is called, and the scheduler takes control from there, so the
code never reaches the while loop.

Therefore, if you want to create your own application after this tutorial, you should implement
it within one of the already created threads or create your own, taking into account the
communication and synchronization between the threads. Also, we suggest that you use
this project as a base for your own, especially if you plan to use the TCP protocol in your
program. Start with this project and add your libraries and code, because there is a significant
dependency on files, libraries, and drivers to work with this WiFi module.
Initialization and Thread Creation:

The application’s main entry point is the tx_application_define() function, which ThreadX
calls during kernel start-up. This function is responsible for creating all the necessary NetX
resources and initializing the system. The sequence of initialization includes creating a packet
pool, setting up an IP instance, enabling various protocols (ARP, ICMP, UDP, and TCP), and
creating a DHCP client.
In the provided codes, the MX_ThreadX_Init() function starts the ThreadX kernel by calling
tx_kernel_enter(), initiating the kernel operations. Then, MX_NetXDuo_Init() handles
the initialization of NetX resources.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

41

https://doi.org/10.5281/zenodo.12700232

1 void MX_ThreadX_Init (void) {
2 tx_kernel_enter ();
3 }

In MX_NetXDuo_Init(), memory for various components is allocated, and the system is
initialized. For instance, the packet pool is created using nx_packet_pool_create(), and
the IP instance is created with nx_ip_create().

1 ret = nx_packet_pool_create (& AppPool , "Main Packet Pool", PAYLOAD_SIZE ,
pointer , NX_PACKET_POOL_SIZE);

2 ret = nx_ip_create (& IpInstance , "Main Ip instance ", NULL_ADDRESS ,
NULL_ADDRESS , &AppPool , nx_driver_emw3080_entry , pointer , 2 *
DEFAULT_MEMORY_SIZE , DEFAULT_PRIORITY);

Thread Execution:

Two threads are created: AppMainThread and AppTCPThread, both having the same priority.
AppMainThread starts automatically (TX_AUTO_START), while AppTCPThread is started later
(TX_DONT_START).

1 ret = tx_thread_create (& AppMainThread , "App Main thread ",
App_Main_Thread_Entry , 0, pointer , 2 * DEFAULT_MEMORY_SIZE ,
DEFAULT_PRIORITY , DEFAULT_PRIORITY , TX_NO_TIME_SLICE , TX_AUTO_START);

2 ret = tx_thread_create (& AppTCPThread , "App TCP Thread ",
App_TCP_Thread_Entry , 0, pointer , 2 * DEFAULT_MEMORY_SIZE ,
DEFAULT_PRIORITY , DEFAULT_PRIORITY , TX_NO_TIME_SLICE , TX_DONT_START);

AppMainThread is responsible for starting the DHCP client, waiting for the IP address
resolution, and then resuming AppTCPThread.

1 static VOID App_Main_Thread_Entry (ULONG thread_input) {
2 nx_ip_address_change_notify (& IpInstance ,

ip_address_change_notify_callback , NULL);
3 nx_dhcp_start (& DHCPClient);
4 tx_semaphore_get (& Semaphore , TX_WAIT_FOREVER);
5 tx_thread_resume (& AppTCPThread);
6 tx_thread_relinquish ();
7 }

AppTCPThread handles the TCP communication. It creates a TCP socket, connects to a remote
server, sends a series of messages, and receives responses. Upon successful communication, it
prints the responses to the terminal and toggles a green LED to indicate success.

1 static VOID App_TCP_Thread_Entry (ULONG thread_input) {
2 nx_tcp_socket_create (& IpInstance , &TCPSocket , "TCP Server Socket ",

NX_IP_NORMAL , NX_FRAGMENT_OKAY , NX_IP_TIME_TO_LIVE , WINDOW_SIZE ,
NX_NULL , NX_NULL);

3 nx_tcp_client_socket_bind (& TCPSocket , DEFAULT_PORT , NX_WAIT_FOREVER);
4 nx_tcp_client_socket_connect (& TCPSocket , TCP_SERVER_ADDRESS ,

TCP_SERVER_PORT , NX_WAIT_FOREVER);
5 while (count ++ < MAX_PACKET_COUNT) {
6 // Packet allocation and sending
7 nx_packet_allocate (& AppPool , & data_packet , NX_TCP_PACKET ,

TX_WAIT_FOREVER);
8 nx_packet_data_append (data_packet , (VOID *) DEFAULT_MESSAGE , sizeof (

DEFAULT_MESSAGE), &AppPool , TX_WAIT_FOREVER);
9 nx_tcp_socket_send (& TCPSocket , data_packet , DEFAULT_TIMEOUT);

10 // Receiving response
11 nx_tcp_socket_receive (& TCPSocket , & server_packet , DEFAULT_TIMEOUT);
12 nx_packet_data_retrieve (server_packet , data_buffer , & bytes_read);
13 PRINT_DATA (source_ip_address , source_port , data_buffer);
14 nx_packet_release (server_packet);
15 HAL_GPIO_TogglePin (LED_GREEN_GPIO_Port , LED_GREEN_Pin);
16 }

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

42

https://doi.org/10.5281/zenodo.12700232

17 // Cleanup
18 nx_tcp_socket_disconnect (& TCPSocket , DEFAULT_TIMEOUT);
19 nx_tcp_client_socket_unbind (& TCPSocket);
20 nx_tcp_socket_delete (& TCPSocket);
21 }

3.3 Implementing Communication with ThingSpeak

Based on the code examples shown earlier, we will now set up our own communication with
the ThingSpeak server by primarily modifying the mentioned files: app_threadx.c and
app_netxduo.c. Additionally, some changes will be required in other files. To access these
files, it’s easier to use your computer’s file explorer rather than STM32CubeIDE ’s, as it may
not display all files present within folders.
But before making the modifications mentioned later, I recommend building your project and
checking for any errors related to library path issues, for example. To do this, go to Project
-> Build Project and wait for the process to complete. At the end, you should see a message
indicating that your build encountered 0 errors. If not, delete the repository and redo the
cloning procedure mentioned in section 3.
After certifying that everything is working, the first step is to add your WiFi SSID and password
so the module can connect to the internet. Navigate to Nx_TCP_Echo_Client/Core/Inc/m
x_wifi_conf.h and modify the following lines by adding your network information:

1 # define WIFI_SSID " YOUR_SSID "
2 # define WIFI_PASSWORD " YOUR_PASSWORD "

You can connect using a network created by your smartphone or a router, as long as it’s not
an enterprise network requiring additional information beyond network and password, such as
Eduroam.
Next, define the ThingSpeak server information and the data you want to send. First, create
a new channel on the ThingSpeak website as described in section 6 of Chapter 2, and note
down your Write API key. Then, modify the file located at Nx_TCP_Echo_Client/NetXDuo/
App/app_netxduo.h:

1 # define PAYLOAD_SIZE 1544
2 # define NX_PACKET_POOL_SIZE ((PAYLOAD_SIZE + sizeof (NX_PACKET)) *

10)
3 # define WINDOW_SIZE 512
4

5 # define DEFAULT_MEMORY_SIZE 1024
6 # define DEFAULT_PRIORITY 10
7

8 # define NULL_ADDRESS 0
9

10 # define DEFAULT_PORT 6000
11 # define TCP_SERVER_PORT 80 // Port 80 for HTTP
12 # define TCP_SERVER_ADDRESS IP_ADDRESS (184 , 106 , 153 , 149) //

ThingSpeak server IP
13

14 # define DEFAULT_TIMEOUT 10 * NX_IP_PERIODIC_RATE
15 # define THINGSPEAK_API_KEY " Q7G63OMFJK1H2T5W " // Write key
16 # define THINGSPEAK_FIELD_VALUE 100 // Value we want to send

In this code snippet, we added the ThingSpeak server information such as port, server IP, and
our Write API key. Additionally, we defined a value (THINGSPEAK_FIELD_VALUE) to send
to the server, which in this case is 100 but could represent a value read from a sensor, for
example.
Now, we proceed to app_netxduo.c, where we will handle communication with the server.
Since we are using the TCP protocol, we won’t need to modify thread creation or DHCP client

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

43

https://doi.org/10.5281/zenodo.12700232

initialization. Therefore, we will only adjust App_TCP_Thread_Entry() while explaining each
part of what this thread will do. A better way to see the code is in this path:

� chapter-3/STM32CubeU5/app_netxduo.c

1 static VOID App_TCP_Thread_Entry (ULONG thread_input)
2 {
3 while (1){
4 UINT ret;
5

6 ULONG bytes_read ;
7 UCHAR data_buffer [512];
8

9 ULONG source_ip_address ;
10 UINT source_port ;
11

12 NX_PACKET * server_packet ;
13 NX_PACKET * data_packet ;

• While Loop: The function starts with an infinite while loop (while(1)) to continuously
execute its tasks.

• Variable Declarations: Several variables are declared:
– ret: Used to store the return value of various function calls for error handling.
– bytes_read: Stores the number of bytes read from the server response.
– data_buffer: Buffer to hold the data received from the server.
– source_ip_address and source_port: Variables to store the IP address and

port of the server.
– server_packet and data_packet: Pointers to NX_PACKET structures used for

sending and receiving data over the network.
1 /* create the TCP socket */
2 ret = nx_tcp_socket_create (& IpInstance , &TCPSocket , "TCP Server Socket ",

NX_IP_NORMAL , NX_FRAGMENT_OKAY ,
3 NX_IP_TIME_TO_LIVE , WINDOW_SIZE , NX_NULL ,

NX_NULL);
4 if (ret != NX_SUCCESS)
5 {
6 Error_Handler ();
7 }
8

9 /* bind the client socket for the DEFAULT_PORT */
10 ret = nx_tcp_client_socket_bind (& TCPSocket , DEFAULT_PORT ,

NX_WAIT_FOREVER);
11

12 if (ret != NX_SUCCESS)
13 {
14 Error_Handler ();
15 }
16

17 /* connect to the remote server on the specified port */
18 ret = nx_tcp_client_socket_connect (& TCPSocket , TCP_SERVER_ADDRESS ,

TCP_SERVER_PORT , NX_WAIT_FOREVER);
19

20 if (ret != NX_SUCCESS)
21 {
22 Error_Handler ();
23 }

• TCP Socket Creation and Connection:
– nx_tcp_socket_create: Creates a TCP socket (TCPSocket) for communication.
– nx_tcp_client_socket_bind: Binds the TCP client socket to DEFAULT_PORT.
– nx_tcp_client_socket_connect: Connects the TCP client socket to TCP_SER

VER_ADDRESS on TCP_SERVER_PORT.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

44

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-3/STM32CubeU5/app_netxduo.c
https://doi.org/10.5281/zenodo.12700232

• Error Handling: Checks if each operation (nx_tcp_socket_create, nx_tcp_client
_socket_bind, nx_tcp_client_socket_connect) succeeds (ret == NX_SUCCESS).
If any operation fails, the Error_Handler() function is called to manage the error
appropriately.

1 while (1)
2 {
3 TX_MEMSET (data_buffer , '\0 ', sizeof (data_buffer));
4

5 /* Create the HTTP GET request */
6 char http_request [256];
7 snprintf (http_request , sizeof (http_request),
8 "GET / update ? api_key =%s& field1 =%d HTTP /1.1\ r\ nHost : api.

thingspeak .com\r\ nConnection : close \r\n\r\n",
9 THINGSPEAK_API_KEY , THINGSPEAK_FIELD_VALUE);

10

11 /* allocate the packet to send over the TCP socket */
12 ret = nx_packet_allocate (& AppPool , & data_packet , NX_TCP_PACKET ,

TX_WAIT_FOREVER);
13

14 if (ret != NX_SUCCESS)
15 {
16 break ;
17 }
18

19 /* append the message to send into the packet */
20 ret = nx_packet_data_append (data_packet , (VOID *) http_request , strlen

(http_request), &AppPool , TX_WAIT_FOREVER);
21

22 if (ret != NX_SUCCESS)
23 {
24 nx_packet_release (data_packet);
25 break ;
26 }
27

28 /* send the packet over the TCP socket */
29 ret = nx_tcp_socket_send (& TCPSocket , data_packet , DEFAULT_TIMEOUT);
30

31 if (ret != NX_SUCCESS)
32 {
33 break ;
34 }
35

36 /* wait for the server response */
37 ret = nx_tcp_socket_receive (& TCPSocket , & server_packet ,

DEFAULT_TIMEOUT);
38

39 if (ret == NX_SUCCESS)
40 {
41 /* get the server IP address and port */
42 nx_udp_source_extract (server_packet , & source_ip_address , &

source_port);
43

44 /* retrieve the data sent by the server */
45 nx_packet_data_retrieve (server_packet , data_buffer , & bytes_read);
46

47 /* print the received data */
48 PRINT_DATA (source_ip_address , source_port , data_buffer);
49

50 /* release the server packet */
51 nx_packet_release (server_packet);
52

53 /* toggle the green led on success */
54 HAL_GPIO_TogglePin (LED_GREEN_GPIO_Port , LED_GREEN_Pin);
55 }
56 else
57 {
58 /* no message received exit the loop */
59 break ;

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

45

https://doi.org/10.5281/zenodo.12700232

60 }
61 }

• Data Transmission Loop:
– Packet Allocation and HTTP Request Creation:

∗ nx_packet_allocate: Allocates a packet (data_packet) to send over the
TCP socket.

∗ Constructs an HTTP GET request (http_request) with the ThingSpeak API
key (THINGSPEAK_API_KEY) and field value (THINGSPEAK_FIELD_VALUE).

– Data Transmission:
∗ nx_packet_data_append: Appends the HTTP request message to data_pa

cket.
∗ nx_tcp_socket_send: Sends data_packet over TCPSocket to the ThingS-

peak server.
– Response Handling:

∗ nx_tcp_socket_receive: Waits for a response from the server (server_pa
cket).

∗ If a response (NX_SUCCESS) is received:
· Extracts server IP address and port (nx_udp_source_extract).
· Retrieves and prints the data received from the server (nx_packet_data

_retrieve, PRINT_DATA).
· Releases the server packet (nx_packet_release).
· Toggles a green LED (HAL_GPIO_TogglePin(LED_GREEN_GPIO_Port,

LED_GREEN_Pin)).
∗ If no response is received (ret != NX_SUCCESS), exits the transmission loop.

1 /* release the allocated packets */
2 nx_packet_release (server_packet);
3

4 /* disconnect the socket */
5 nx_tcp_socket_disconnect (& TCPSocket , DEFAULT_TIMEOUT);
6

7 /* unbind the socket */
8 nx_tcp_client_socket_unbind (& TCPSocket);
9

10 /* delete the socket */
11 nx_tcp_socket_delete (& TCPSocket);
12

13 /* print test summary on the UART */
14 printf ("\n-------------------------------------\n\ tFINISHED SENDING DATA\

n-------------------------------------\n");
15

16 /* sleep for 4000 clock ticks */
17 tx_thread_sleep (4000) ;
18 }
19 }

• Cleanup and Sleep:
– Releases allocated packets (nx_packet_release).
– Disconnects (nx_tcp_socket_disconnect), unbinds (nx_tcp_client_socket_

unbind), and deletes (nx_tcp_socket_delete) the TCP socket.
– Prints a test summary on UART indicating data transmission completion.
– Sleeps for 4000 clock ticks (tx_thread_sleep(4000)) before restarting the loop

for continuous communication with ThingSpeak.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

46

https://doi.org/10.5281/zenodo.12700232

This function continuously sends HTTP GET requests to the ThingSpeak server, retrieves
responses, and handles them appropriately, ensuring reliable communication using TCP/IP. It
includes error handling and operates periodically with a sleep interval of 4000 clock ticks. In
my case, a sleep of 4000 was sufficient for the server to receive all packets. If this number
were smaller, data transmission would be faster, but the server might not handle the influx
and fail to update its database.
This implementation provides a straightforward approach for such communication logic, suitable
for small-scale applications like ours.
With these modifications made, simply build the project via Project -> Build Project and run
it in debug mode via Run -> Debug. You can monitor the entire initialization, transmission,
and reception process in a terminal, as shown below, where the terminal output precedes the
result on the ThingSpeak website.

Chapter 4: Integrating AI into Edge Devices

1. Overview of Embedded AI
Embedded AI refers to the integration of artificial intelligence capabilities into devices or
systems, often known as edge applications. This enables tasks involving machine learning to
be performed locally, without the need for external computational resources such as cloud
services.
The primary advantages of this approach include:

• Reduced Latency: Due to the proximity of the processing unit to the task.
• Low Bandwidth Usage: Minimal data transmission requirements.
• Low Power Consumption: Optimized for energy efficiency.
• Network Independence: Operates without constant internet connectivity.
• High Performance: Capable of handling demanding tasks efficiently.

Devices with embedded AI are becoming increasingly common and diverse. Examples include
smart cameras that can process images in real-time, voice assistants that understand and
respond to commands without delay, industrial robots that adapt to their environments,
autonomous vehicles that navigate without human intervention, and various IoT devices that
perform complex tasks independently. These systems utilize AI algorithms to enhance their
capabilities, making them smarter and more efficient.
In this chapter, we will introduce the fundamental concepts of edge AI using microcontrollers.
This knowledge will enable you to integrate your own models into the topics discussed in
previous chapters, allowing you to create a complete network. With this approach, you can:

• Build Custom Data Acquisition Systems: Use sensors to gather data in real-time.
• Analyze Data Locally: Implement your own neural networks on microcontrollers to

process and analyze data on-site.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

47

https://doi.org/10.5281/zenodo.12700232

• Automate Device Control: Use the analysis results to trigger actions in other devices
and components.

• Cloud Integration for Monitoring: Connect to the cloud only to remotely monitor and
visualize the collected data and analysis results.

To better understand embedded AI and the usage of STM32CubeIDE for this application,
which, as mentioned earlier, can be somewhat complex for new users, we will implement a very
simple neural network (NN) model that has been previously developed. Therefore, we will not
delve into the concepts of developing your own NN and will mainly focus on the software usage.
However, the model used, developed in Google Colab, is present in the following path:

� chapter-4/tflite_sinewave_training.ipynb

The developed model is capable of approximating the sine value of a given number using
a cloud of random points without using trigonometric operations. As we will see at the
end of this tutorial, the obtained value will not be exact, as this method is inefficient for
determining the sine of a number. However, it will be very useful for you to easily understand
the implementation of AI in microcontrollers.
This tutorial is based on the material developed by DigiKey and is available at: TinyML: Ge
tting Started with STM32 X-CUBE-AI

2. Exporting the Model
The first step is to export your model in the .tflite format to be used in our application.
This type of file is generated through the TensorFlow Lite (TFLite) toolkit, an open-source
library developed by Google for deploying machine learning models to edge devices.
TensorFlow Lite is a lightweight version of TensorFlow designed for mobile and embedded
devices. It enables the deployment of machine learning models on resource-constrained
platforms like smartphones, microcontrollers, and IoT devices. TFLite models are optimized
for low latency and low power consumption. You can convert TensorFlow models to TFLite
format using the TFLite Converter, which applies optimizations such as quantization.
Quantization is a technique used in machine learning and digital signal processing to reduce
the precision of the numbers representing a model, typically from floating-point to integer
values. This process helps to decrease the model size, reduce memory usage, and improve
computational efficiency, particularly important for deploying models on resource-constrained
devices like microcontrollers and mobile phones.
So, we need to follow these steps to have our model in .tflite format:

1. First, we will import our tflite_sinewave_training.ipynb file into the Google Co
lab environment via File -> Upload Notebook.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

48

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-4/tflite_sinewave_training.ipynb
https://www.digikey.fr/en/maker/projects/tinyml-getting-started-with-stm32-x-cube-ai/f94e1c8bfc1e4b6291d0f672d780d2c0
https://www.digikey.fr/en/maker/projects/tinyml-getting-started-with-stm32-x-cube-ai/f94e1c8bfc1e4b6291d0f672d780d2c0
https://colab.research.google.com/
https://colab.research.google.com/
https://doi.org/10.5281/zenodo.12700232

2. Check the code if you are interested in how to do the conversion to a .tflite file.
Then, run all the cells in Runtime -> Run All.

3. After the execution is complete, download the sine_model.tflite file.

The same file is also available at:
� chapter-4/sine_model.tflite

3. Installing the X-Cube-AI Package
X-CUBE-AI is an STM32Cube Expansion Package, part of the STM32Cube.AI ecosystem.
With this package, we can utilize functionalities for the automatic conversion of pretrained
artificial intelligence algorithms, including neural network and classical machine learning models,
into our C code as optimized libraries to be implemented on the microcontroller.
To do this, follow these steps:

1. Open STM32CubeIDE.
2. Log in with your myST account. Create if you don’t have one.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

49

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-4/sine_model.tflite
https://doi.org/10.5281/zenodo.12700232

3. Go to Help -> Manage Embedded Software Packages.

4. Under STMicroelectronics, search for the X-Cube-AI package.

5. Install version 5.3.0 by clicking Install. Do not use another version, as the
implementation of the package libraries may differ from what is shown here.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

50

https://doi.org/10.5281/zenodo.12700232

4. Project Initialization
Now we will start our project as the same way we did before in Chapter 3:

1. Click on File -> New -> STM32 Project.

2. Select the Board Selector tab and search for B-U585I-IOT02A, click on it and then
click Next.

3. Choose a name for your project and leave the default settings as shown in the image,
then select Finish. If asked to initialize all peripherals, click Yes to already pre-configure
your microcontroller pins and functionalities.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

51

https://doi.org/10.5281/zenodo.12700232

4. You will then have STM32CubeMX interface.

5. Project Configuration
Having covered the basics of the software from the previous chapter and the recommended
videos, we can now proceed with configuring our project.
For this tutorial, we will not use any pins as input or output. We will use serial communication
to print information on the terminal and verify the operation of our code. Normally, it would
be necessary to configure one of the UART ports for serial communication, but this has already
been initialized and is connected through the micro-USB ST-Link for a direct connection to
the computer using a baud rate of 115200 Bits/s.
Follow these steps to configure our project:

1. In the Timers tab, activate TIM16 so that it ticks every microsecond. To do this, select
TIM16, check Activated in Mode, and in the Configuration tab, set the Prescaler
to meet our requirement of ticking every microsecond (160-1=159 for a system clock
of 160 MHz) and set the AutoReload register to its maximum (65535 for a 16-bit
timer). For a better understanding of how timers work, see section 2 of Chapter 3.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

52

https://doi.org/10.5281/zenodo.12700232

2. Next, we will add the X-CUBE-AI package to the project. Click on Software Packs and
then on Select Components, and a new window will appear. Search for the X-CUBE-AI
package and, as mentioned earlier during its installation, choose version 5.2.0 and
activate the Core. If the installed version does not appear, remove and reinstall it using
the same method described in section 3, save the project, choose not to generate the
code, restart the software, and see if the correct version appears.

3. Now let’s configure the X-CUBE-AI package. Select the Middleware and Software P
acks tab and click on X-CUBE-AI. Activate the package in Mode, and in Configuration,
click on Add network and add the model in .tflite format generated through Colab
with the name that will be used by its functions in the code you will write later.

4. After configuring the model, we can compress it to fit in our microcontroller. As previously
mentioned, the memory required to run a given model may exceed the available memory
on the microcontroller. However, since our example is very small, it will not require this
configuration. We can then analyze the model and verify that everything is correct by

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

53

https://doi.org/10.5281/zenodo.12700232

clicking on Analyze, which will show some parameters about the model, such as its
complexity and the necessary Flash and RAM memory sizes for its implementation. The
Show graph option will display a graphical view of your model. The desktop and target
validation options can be used to validate the application of your model but will not be
covered at this time.

5. Now we will configure the clock of our microcontroller the same way we did in Chapter
3. To do this, select the top Clock Configuration tab. Select the High Speed Inter
nal Clock (HSI) in the PLL Source Mux, set HCLK (MHz) to the maximum allowed
(160 MHz), press Enter, and wait for the software to find the best solution for your
configuration, which should look similar to the values on the right in the photo below
(red box 4).

6. The final configuration step is the Project Manager. Select the top tab with the same
name and then Code Generator, click on Add necessary library files as refer
enced in the toolchain project configuration file, and uncheck the option
Delete previously generated files when not re-generated. Save the project
and select to generate code in the window that appears.

7. Now, your project is configured, and your initial code is generated. Ensure that you
have the X-CUBE-AI and Middlewares folders in your Project Explorer on the left. If
these folders are missing, you may have incorrectly configured the required version of
X-CUBE-AI or selected the wrong options in the Project Manager.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

54

https://doi.org/10.5281/zenodo.12700232

If these folders are not present, follow these troubleshooting steps:
• Reinstall X-CUBE-AI: Go back to the Manage Embedded Software Packages

under Help and ensure that version 5.2.0 of X-CUBE-AI is installed. If not,
reinstall it as described in section 3.

• Verify Project Manager Settings: Double-check the settings in the Project
Manager to ensure all necessary options are selected. Specifically, make sure
Add necessary library files as referenced in the toolchain proje
ct configuration file is checked, and Delete previously generated fi
les when not re-generated is unchecked. If you continue with the problem,
you can try to choose the other options in this same tab in the packages and em
bedded software packs and generated files sections.

• Generate Code Again: Save your project and regenerate the code. Ensure no
errors are present during the generation process.

By following these steps, you should have your project correctly set up with all necessary libraries
and configurations, allowing you to proceed with developing your embedded AI application on
the STM32CubeIDE.

6. Writing the Code
After configuring the project and generating the code, we move on to developing our program-
ming logic. The complete code is available in the provided folder, but don’t just copy and
paste it completely, because the generated code can change based on the microprocessor, your
project configuration, or even the IDE and package versions used. Therefore, only copy and
paste within the safe zones mentioned earlier.

� chapter-4/B-U585I-IOT02A-sine-model/Core/Src/main.c

Including Libraries:

The first step is to add the necessary headers.
1 /* Private includes

--*/
2 /* USER CODE BEGIN Includes */
3 # include <stdio .h>
4

5 # include " ai_datatypes_defines .h"
6 # include " ai_platform .h"
7 # include " sine_model .h"
8 # include " sine_model_data .h"
9 /* USER CODE END Includes */

• stdio.h: Standard C library for using the printf command.
• sine_model.h: Contains the main functions we will use in our code. You can access

them by hovering over the include and clicking while holding the CTRL key.
• sine_model_data.h: Represents our neural network in byte format.

The remaining libraries are generated by X-CUBE-AI and include functions we will use to
integrate our model into the code.
Note that sine_model.h and sine_model_data.h use the same name given to the model
during the X-CUBE-AI configuration. If you named it differently, you must use that name here
and in other functions below.
Global Variables and Initializations:

After the includes, we declare global variables and initialize some structures critical for the
neural network operation on the STM32 microcontroller.

1 /* USER CODE BEGIN 1 */

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

55

https://github.com/Mateushga1/AIoT-Guidebook/blob/main/chapter-4/B-U585I-IOT02A-sine-model/Core/Src/main.c
https://doi.org/10.5281/zenodo.12700232

2 char buf [50];
3 int buf_len = 0;
4 ai_error ai_err ;
5 ai_i32 nbatch ;
6 uint32_t timestamp ;
7 float y_val ;
8

9 // Chunk of memory used to hold intermediate values for neural network
10 AI_ALIGNED (4) ai_u8 activations [AI_SINE_MODEL_DATA_ACTIVATIONS_SIZE];
11

12 // Buffers used to store input and output tensors
13 AI_ALIGNED (4) ai_i8 in_data [AI_SINE_MODEL_IN_1_SIZE_BYTES];
14 AI_ALIGNED (4) ai_i8 out_data [AI_SINE_MODEL_OUT_1_SIZE_BYTES];
15

16 // Pointer to our model
17 ai_handle sine_model = AI_HANDLE_NULL ;
18

19 // Initialize wrapper structs that hold pointers to data and info about
the

20 // data (tensor height , width , channels)
21 ai_buffer ai_input [AI_SINE_MODEL_IN_NUM] = AI_SINE_MODEL_IN ;
22 ai_buffer ai_output [AI_SINE_MODEL_OUT_NUM] = AI_SINE_MODEL_OUT ;
23

24 // Set working memory and get weights / biases from model
25 ai_network_params ai_params = {
26 AI_SINE_MODEL_DATA_WEIGHTS (ai_sine_model_data_weights_get ()),
27 AI_SINE_MODEL_DATA_ACTIVATIONS (activations)
28 };
29

30 // Set pointers wrapper structs to our data buffers
31 ai_input [0]. n_batches = 1;
32 ai_input [0]. data = AI_HANDLE_PTR (in_data);
33 ai_output [0]. n_batches = 1;
34 ai_output [0]. data = AI_HANDLE_PTR (out_data);
35 /* USER CODE END 1 */

• Memory Buffers: activations, in_data, and out_data are memory buffers that
store intermediate data, inputs, and outputs of the neural network, respectively.

• Model Pointer: sine_model is a pointer that will reference the neural network instance.
• Input and Output Structures: ai_input and ai_output are structures that hold

pointers to the input and output data, as well as information about tensor dimensions.
• Network Parameters: ai_params contains the weights, biases, and activations of the

neural network, essential for initializing the model.
• Buffer Configuration: The lines defining ai_input[0].n_batches and ai_output[

0].n_batches configure these buffers to receive one batch of data.
Neural Network Initialization:

Next, we initialize the timer and set up the neural network:
1 /* USER CODE BEGIN 2 */
2 // Start timer / counter
3 HAL_TIM_Base_Start (& htim16);
4

5 // Greetings !
6 buf_len = sprintf (buf , "\r\n\r\ nSTM32 X-Cube -AI test\r\n");
7 HAL_UART_Transmit (& huart1 , (uint8_t *)buf , buf_len , 100);
8

9 // Create instance of neural network
10 ai_err = ai_sine_model_create (& sine_model , AI_SINE_MODEL_DATA_CONFIG);
11 if (ai_err .type != AI_ERROR_NONE)
12 {
13 buf_len = sprintf (buf , " Error : could not create NN instance \r\n");
14 HAL_UART_Transmit (& huart1 , (uint8_t *)buf , buf_len , 100);
15 while (1);
16 }
17

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

56

https://doi.org/10.5281/zenodo.12700232

18 // Initialize neural network
19 if (! ai_sine_model_init (sine_model , & ai_params))
20 {
21 buf_len = sprintf (buf , " Error : could not initialize NN\r\n");
22 HAL_UART_Transmit (& huart1 , (uint8_t *)buf , buf_len , 100);
23 while (1);
24 }
25 /* USER CODE END 2 */

• Timer Initialization: HAL_TIM_Base_Start(&htim16) starts a timer used to measure
the neural network inference time.

• Welcome Message: sprintf and HAL_UART_Transmit send an initial message via
UART, confirming that the system is operational.

• Neural Network Instance Creation: ai_sine_model_create creates an instance of
the neural network. If an error occurs, an error message is transmitted, and the system
enters an infinite loop.

• Neural Network Initialization: ai_sine_model_init initializes the neural network
with the parameters defined earlier. If initialization fails, an error message is transmitted,
and the system enters an infinite loop.

Main Loop:

Finally, we have the main loop of the code, where inference is continuously performed:
1 /* Infinite loop */
2 /* USER CODE BEGIN WHILE */
3 while (1)
4 {
5 // Fill input buffer (use test value)
6 for (uint32_t i = 0; i < AI_SINE_MODEL_IN_1_SIZE ; i++)
7 {
8 ((ai_float *) in_data)[i] = (ai_float)2.0f;
9 }

10

11 // Get current timestamp
12 timestamp = htim16 .Instance ->CNT;
13

14 // Perform inference
15 nbatch = ai_sine_model_run (sine_model , & ai_input [0] , & ai_output [0]);
16 if (nbatch != 1) {
17 buf_len = sprintf (buf , " Error : could not run inference \r\n");
18 HAL_UART_Transmit (& huart1 , (uint8_t *)buf , buf_len , 100);
19 }
20

21 // Read output (predicted y) of neural network
22 y_val = ((float *) out_data)[0];
23

24 // Print output of neural network along with inference time (
microseconds)

25 buf_len = sprintf (buf ,
26 " Output : %f | Duration : %lu\r\n",
27 y_val ,
28 htim16 .Instance ->CNT - timestamp);
29 HAL_UART_Transmit (& huart1 , (uint8_t *)buf , buf_len , 100);
30

31 // Wait before doing it again
32 HAL_Delay (500) ;
33

34 /* USER CODE END WHILE */

• Fill Input Buffer: The for loop fills the input buffer in_data with a test value (2.0f)
for inference.

• Timestamp: timestamp stores the current timer value before inference to measure
execution time.

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

57

https://doi.org/10.5281/zenodo.12700232

• Inference: ai_sine_model_run performs the neural network inference. If it returns a
value other than 1, it indicates an error.

• Read Result: y_val stores the output value of the neural network.
• Send Result: sprintf and HAL_UART_Transmit send the result and inference time

via UART.
• Delay: HAL_Delay(500) creates a 500 ms pause before the next inference.

Handling Float in printf

You will notice an error when adding the line to print the output of the neural network along
with the inference time. In STM32CubeIDE, the printf function does not support float values
by default. To fix this, we need to change the project settings.
Go to Project -> Properties -> C/C++ Build -> Settings, select the Configuration
Debug and in MCU GCC Linker -> Miscellaneous, add -u_printf_float in Other flags.
Repeat this for the Release Configuration. Finally, click Apply and Close and save your
program.

Now, in Project -> Build Project, you can compile your code and see if there are any errors.
With these steps, your code is ready to run the neural network on the STM32 microcontroller,
allowing you to observe the outputs and performance metrics via UART. This code will infer the
sin(2.0) in radians and provide the approximate value based on the results obtained during
the model training.

7. Debugging and Uploading to STM32
To ensure that our code functions correctly and everything is as expected, we will run it in
Debug mode. Follow these steps:

1. Navigate to Run -> Debug.
2. In the Confirm Perspective Switch window that appears, press Switch.
3. Finally, click Resume in the top toolbar (or press F8).

Next, open a serial terminal to observe your code running on the microcontroller. While I will
use the terminal in Mbed Studio, you may prefer a dedicated terminal application such as
PuTTY. Select the correct port and set the baud rate to 115200 Bits/s. You should see an
output similar to the image below:

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

58

https://doi.org/10.5281/zenodo.12700232

As shown in the example, my model inferred an output of 0.8899 for sin(2.0), which is
relatively close to the actual value of 0.9093. This result is acceptable for demonstrating the
procedure, but the training could be improved to enhance the accuracy of the inference.
We can also run our code in Release mode on our microcontroller. This mode excludes
certain files used by the Debug mode and employs a different compiler optimizer, reducing the
code size and potentially improving inference time. To do this:

1. Stop the Debug mode if it is still running by clicking the Terminate button in the
superior toolbar.

2. Navigate to Project -> Build Configurations -> Set Active -> Release.
3. Click Run -> Run Configurations. In that window, in the left pane, click on the

New Launch Configuration button, which should create a new configuration named
project_name Release.

4. In the Main tab, select Search Project and select your project_name/Release/proj
ect_name.elf file from the bottom pane. Click OK. Select Release for your Build
Configuration. Click Apply and Run.

5. Check your terminal output.
In my case, the differences were minimal (only 1 microsecond faster inference time), but
depending on the size of your code, functionalities, and the microcontroller used, the impact
may be more significant.

References
STMicroelectronics. B-L475E-IOT01A - STM32L4 Discovery kit IoT node. https://www.st.

com/en/evaluation-tools/b-l475e-iot01a.html
STMicroelectronics. STM32L475RC Datasheet Ultra-low-power Arm® Cortex®-M4 32-bit

MCU+FPU. https://www.st.com/resource/en/datasheet/stm32l475rc.pdf
STMicroelectronics. B-U585I-IOT02A Discovery kit for IoT node with STM32U5 series.

https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html
Arm. MBed OS Official Website. https://os.mbed.com/
STMicroelectronics. STM32CubeIDE Integrated Development Environment for STM32. https:

//www.st.com/en/development-tools/stm32cubeide.html
STMicroelectronics. STSW-LINK009 USB Driver. https://www.st.com/en/development-tools/

stsw-link009.html
PuTTY. PuTTY - Terminal Emulator. https://www.putty.org/
STMicroelectronics. STM32Cube MCU Package for STM32U5 series. https://www.st.com/

en/embedded-software/stm32cubeu5.html#overview
STMicroelectronics. STM32CubeMX Tool - STM32Cube initialization code generator. https:

//www.st.com/en/development-tools/stm32cubemx.html
STMicroelectronics. STM32CubeProgrammer Tool - STM32CubeProgrammer software for all

STM32. https://www.st.com/en/development-tools/stm32cubeprog.html
STMicroelectronics. Release Notes for STM32CubeU5 Firmware Package. https:

//htmlpreview.github.io/?https://github.com/STMicroelectronics/STM32CubeU5/blob/
master/Release_Notes.html

STMicroelectronics. STM32Cube MCU Package for STM32U5 series. https://github.com/
STMicroelectronics/STM32CubeU5/tree/main

Mitch Davis. STM32 Guide #2: Registers + HAL (Blink example). https://www.youtube.
com/watch?v=Hffw-m9fuxc&list=WL&index=30

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

59

https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/resource/en/datasheet/stm32l475rc.pdf
https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html
https://os.mbed.com/
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stsw-link009.html
https://www.st.com/en/development-tools/stsw-link009.html
https://www.putty.org/
https://www.st.com/en/embedded-software/stm32cubeu5.html#overview
https://www.st.com/en/embedded-software/stm32cubeu5.html#overview
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://htmlpreview.github.io/?https://github.com/STMicroelectronics/STM32CubeU5/blob/master/Release_Notes.html
https://htmlpreview.github.io/?https://github.com/STMicroelectronics/STM32CubeU5/blob/master/Release_Notes.html
https://htmlpreview.github.io/?https://github.com/STMicroelectronics/STM32CubeU5/blob/master/Release_Notes.html
https://github.com/STMicroelectronics/STM32CubeU5/tree/main
https://github.com/STMicroelectronics/STM32CubeU5/tree/main
https://www.youtube.com/watch?v=Hffw-m9fuxc&list=WL&index=30
https://www.youtube.com/watch?v=Hffw-m9fuxc&list=WL&index=30
https://doi.org/10.5281/zenodo.12700232

Deep Blue Embedded. STM32 Timers Tutorial | Hardware Timers Explained. https://
deepbluembedded.com/stm32-timers-tutorial-hardware-timers-explained/

DigiKey. Getting Started with STM32 and Nucleo Part 6: Timers and Timer Interrupts |
Digi-Key Electronics. https://youtu.be/VfbW6nfG4kw?si=4GEUskWYxO0k2GLK

Deep Blue Embedded. STM32 PWM Example – Timer PWM Mode Tutorial. https://
deepbluembedded.com/stm32-pwm-example-timer-pwm-mode-tutorial/

STMicroelectronics. Hands-On with STM32 Timers: Dead-time Insertion in Complementary
PWM Output. https://www.youtube.com/watch?v=rDaC2N-33Oo

DigiKey. TinyML: Getting Started with STM32 X-CUBE-AI. https://www.digikey.fr/en/maker/
projects/tinyml-getting-started-with-stm32-x-cube-ai/f94e1c8bfc1e4b6291d0f672d780d2c0

TensorFlow. TensorFlow Lite Official Website. https://www.tensorflow.org/lite
STMicroelectronics. X-CUBE-AI - AI expansion pack for STM32CubeMX. https://www.st.

com/en/embedded-software/x-cube-ai.html#get-software

Mateus H. Galvão and Pietro M. Ferreira„ (2024). AIoT Guidebook: Comprehensive tutorial for developing IoT and AI applications on STM32
microcontrollers. Open Source Software. https://doi.org/10.5281/zenodo.12700232

60

https://deepbluembedded.com/stm32-timers-tutorial-hardware-timers-explained/
https://deepbluembedded.com/stm32-timers-tutorial-hardware-timers-explained/
https://youtu.be/VfbW6nfG4kw?si=4GEUskWYxO0k2GLK
https://deepbluembedded.com/stm32-pwm-example-timer-pwm-mode-tutorial/
https://deepbluembedded.com/stm32-pwm-example-timer-pwm-mode-tutorial/
https://www.youtube.com/watch?v=rDaC2N-33Oo
https://www.digikey.fr/en/maker/projects/tinyml-getting-started-with-stm32-x-cube-ai/f94e1c8bfc1e4b6291d0f672d780d2c0
https://www.digikey.fr/en/maker/projects/tinyml-getting-started-with-stm32-x-cube-ai/f94e1c8bfc1e4b6291d0f672d780d2c0
https://www.tensorflow.org/lite
https://www.st.com/en/embedded-software/x-cube-ai.html#get-software
https://www.st.com/en/embedded-software/x-cube-ai.html#get-software
https://doi.org/10.5281/zenodo.12700232

	Chapter 1: Overview and Objectives
	1. Learning Goals
	2. The Hardware and Software
	2.1 B-L475E-IOT01A Development Board
	2.2 B-U585I-IOT02A Development Board
	2.3 How to Program your MCU
	2.4 Choosing the IDE

	Chapter 2: Exploring MBed OS
	1. Installation and Setup
	2. Example Blinking a LED
	3. Example Using the Board's Internal Sensors
	3.1 Importing a Complete Project
	3.2 Starting from a Blank Project

	4. Sensors Tutorial
	4.1 List of Available Sensors and Actuators
	4.2 Joystick Sensor
	4.3 Multicolor LED
	4.4 Humidity Sensor
	4.5 Appendix: Example Program to Control LEDs with the Joystick

	5. Connecting the Board to the Network via WIFI
	5.1 Data Transmission Standards
	5.2 Compilation and Launch
	5.3 General Code Routines (To Be Reused Everywhere)
	5.4 The Application
	5.5 General Part of main.cpp
	5.6 Specific Part of main.cpp

	6. Getting Started with ThingSpeak
	6.1 Setting Up a Data Collection Server (Cloud)
	6.2 Creating the Main Communication File

	Chapter 3: Introduction to STM32CubeIDE
	1. The Basics of STM32CubeIDE
	2. Timer and Trigger Management in STM32CubeIDE Projects
	2.1 Understanding STM32 Timers and Triggers
	2.2 Configuring STM32 Timers in STM32CubeMX
	2.3 PWM Signal Generation Example
	2.4 Handling PWM Signals with Deadtimes

	3. Connecting to ThingSpeak
	3.1 Updating the WiFi Module Firmware
	3.2 Understanding the Base Project and Its Configurations
	3.3 Implementing Communication with ThingSpeak

	Chapter 4: Integrating AI into Edge Devices
	1. Overview of Embedded AI
	2. Exporting the Model
	3. Installing the X-Cube-AI Package
	4. Project Initialization
	5. Project Configuration
	6. Writing the Code
	7. Debugging and Uploading to STM32

	References

