Dynamic modeling of airflow rate through window openings based on CO2 data - Université Savoie Mont Blanc
Communication Dans Un Congrès Année : 2023

Dynamic modeling of airflow rate through window openings based on CO2 data

Résumé

Better estimation of air change rate in naturally ventilated buildings is a key for supporting passive summer thermal comfort strategies. In window aired configurations, this estimation is challenging either with measurements or building simulation methods. In this study, we describe and apply the state space modeling methodology based on the carbon dioxide concentration (CO2) mass balance equation to a simple test case with numerically generated data. We show that a two-state CO2 / Air Change Rate model is suitable. As a modeling novelty, we demonstrate the benefit of improving the formulation with a variable diffusion term for the air change rate state equation. From the test case study findings, we emphasize that a lower interior-exterior CO2 difference results in weaker performance and we list some prospects for future work.
Fichier principal
Vignette du fichier
243_NSB2023_ScientificPaper_CameraReady.pdf (573.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04133191 , version 1 (19-06-2023)

Identifiants

  • HAL Id : hal-04133191 , version 1

Citer

Cédric Schreck, Simon Rouchier, Aurélie Foucquier, Étienne Wurtz. Dynamic modeling of airflow rate through window openings based on CO2 data. 13th Nordic Symposium on Building Physics, Jun 2023, Aalborg, Denmark. ⟨hal-04133191⟩
50 Consultations
51 Téléchargements

Partager

More