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Optimal Tuning of the Lateral-Dynamics Parameters
for Aerial Vehicles with Bounded Lateral Force

Dariusz Horla1∗, Mahmoud Hamandi2∗, Wojciech Giernacki1, Antonio Franchi2,3

Abstract—This letter shows for the first time why it is im-
portant and how to optimize the gains of a position controller
on board of a fully-actuated aerial vehicle with bounded lateral
force, via an auto-tuning approach. In such vehicles, most of the
control authority is expressed along a principal thrust direction,
while along lateral directions smaller forces can be exploited
to achieve full-pose tracking. The nonlinear and hard to model
interplay between the constraint imposed on the lateral force
and the gains of the position controller is overcome employing
the OPTIM-tune calibration method. Several experimental tests,
performed fully autonomously during flight, clearly show the
practicability and benefits of the approach.

Index Terms—Aerial Systems: Mechanics and Control, Aerial
Systems: Applications, Motion Control.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAV)s have been widely
studied in the literature over the past few years, with

applications varying between search and rescue [1], fire fight-
ing [2] and, more recently, aerial physical interaction [3].

Most UAV applications rely on the use of collinear/coplanar
platforms [1], [2], [4], such as quadrotors, hexarotors or
octorotors, where all propellers are coplanar and provide thrust
in a direction parallel to the platform’s vertical axis. While
the use of these platforms allowed the advancement of UAV
research in the above mentioned fields, these platforms lack
the ability of applying lateral forces and thus need to tilt to
move laterally.

Different designs from the literature overcome this limi-
tation by adding additional propellers that can apply lateral
forces. Romero et al. [5] add four propellers to a quadrotor
along the major lateral directions to move sideways. Similarly,
Albers et al. [6] add an extra propeller that produces thrust
perpendicular to the four main propellers. Conversely, Ryll et
al. [7] apply lateral motion by tilting each of the propellers of
a quadrotor independently.
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Recently, all the platforms that can apply lateral forces in
body frame have been grouped in the abstract class of Bounded
Lateral Force (BLF) UAVs, firstly introduced in [8]. Unlike
the more popular quadrotors, these platforms can apply a
lateral force in their body frame thanks to tilted propellers,
similar to the example platform shown in Fig. 1. Since BLF
platforms can move laterally without the need of tilting, they
can tilt without the need of moving laterally, and can interact
with the environment with multiple force directions while
maintaining an independent desired orientation. In its simplest
and more effective representation, among the ones introduced
in [8], a BLF platform’s feasible force set is modeled as
a cylinder which radius, summarized by the parameter fxy ,
which represents the maximum allowable lateral force in any
horizontal direction.

The geometric controller presented in [8] requires the iner-
tial parameters of the platform, and tuned gains of its attitude
and position controllers; similar controllers have also been
proposed in the literature, such as the controller presented
in [9]. The inertial parameters of the platform can be easily
estimated from the platform’s geometry, and do not depend
on the controller gains. Similarly, the attitude controller has
a larger authority than the position controller, and thus can
be tuned using standard methods, independently of the chosen
position controller. The position controller merits further ex-
planation; where as can be seen from Fig. 2 the lateral force
limits are coupled with the applied lift force. Since fxy is an
estimate of the actual maximum lateral force allowed by the
platform for the current lift, it is difficult to chose the best
value for this parameter a priori.

Furthermore, the choice of fxy can substantially affect the
platform’s performance, where if chosen to be near zero,
the platform acts as an underactuated one, with a strong
coupling between the position and attitude dynamics. If fxy
is chosen to be large enough, the platform behaves as a fully-
actuated one, and the position and attitude dynamics become
decoupled; special consideration has to be given as not to
exceed platform’s physical limits at the applied lift.

In this paper, we aim to study experimentally the above-
mentioned interplay between the chosen maximum lateral
force and the position dynamics. To be able to systematically
tune the controller gains for each chosen fxy value, we use the
recently introduced OPTIM-tune algorithm [10]. The method
described in [10] performs auto-tuning of controllers, where
the tuning is done in cycles, composed of stages where a
particular gain is tuned, and the remaining held fixed [10].
The method finds the optimal gains that maximize a designed
performance index, and as such can be scaled to tune any of
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Fig. 1. The considered hexarotor with tilted propellers (Tilt-Hex).

the controller gains affecting the desired performance.
The rest of this letter is structured as follows: Sec. II

presents the UAV model and the BLF controller. Sec. III
analyzes carefully the parameters of the BLF controller, and
discusses the corresponding interdependency. Sec. IV summa-
rizes the tuning algorithm and its use for the tuning of the BLF
controller. Finally, Sec. V shows the experimental analysis of
the proposed method, and Sec. VI concludes the letter.

II. MODELING AND CONTROL OF FULLY ACTUATED
UAVS WITH BOUNDED LATERAL FORCE

In this section, we briefly describe the modeling and control
of fully-actuated aerial vehicles with Bounded Lateral Force,
in order to introduce the parameters whose automatic tuning
represents the goal of the proposed method. A BLF model is
a powerful and simple abstraction of several different multi-
rotor designs, including, e.g., underactuated, fully-actuated,
multi-directional thrust, and thrust vectored designs. For a
detailed description of the BLF model and its relation with
real multirotor designs, we refer the reader to [8], where all
these concepts have been introduced.

We define an inertial world frame FW with origin OW and
axes {xW , yW , zW }, and a robot frame FR, attached to the
vehicle, with origin OR and axes {xR, yR, zR}, where OR
coincides with the Center of Mass (CoM) of the vehicle. We
denote by pR ∈ R3 and RR ∈ SO(3) the position of OR in
FW and the rotation matrix describing the orientation of FR
with respect to (w.r.t.) FW , respectively. The linear velocity of
OR in FW is denoted with vR ∈ R3 and the angular velocity
of FR w.r.t. FW expressed in FR is denoted with ωR ∈ R3.
Finally, mR ∈ R>0 and JR ∈ R3×3

>0 denote the vehicle mass
and moment of inertia w.r.t. to OR in FR, respectively.

Following the Newton-Euler formalism, we can write the
equations of motion of this rigid body as

ṗR = vR, (1)

ṘR = RR[ωR]×, (2)
mRv̇R = −mR g e3 +RRfR , (3)
JRω̇R = −ωR × JRωR + τR , (4)

where [•]× is the skew-symmetric operator, e3 is a unit
vector along zW , g is the gravitational constant, fR =
[ux, uy, uz]

> ∈ Uf ⊂ R3 and τR ∈ R3 are the total control
force and moment applied on OR in FR, respectively, and Uf
represents the set of feasible forces in the robot’s frame. A
BLF vehicle is characterized by the particular structure of the

set Uf , namely, Uf = Uxy × R≥0, where Uxy is the set of
feasible lateral forces defined as

Uxy = {[ux, uy]> ∈ R2|u2
x + u2

y ≤ fxy
2}. (5)

The distinguishing feature of the BLF model is the presence
of the parameter fxy > 0, which represents the maximum
magnitude of lateral (horizontal) force that the BLF vehicle
can produce in FR. As such, and following the allocation
strategy from [8], if the required lateral force /∈ Uxy , the
controller prioritizes the position controller and tilts the plat-
form differently from the reference attitude trajectory so as
to include the lateral force ∈ Uxy . The smaller fxy , the
closer the BLF vehicle resembles an underactuated multirotor
(e.g., a quadrotor) and as a consequence, the more coupled
are its lateral motion and attitude dynamics – e.g., a lateral
acceleration requires a non-zero tilting of the vehicle. The
larger fxy , the more decoupled can be its orientation and
lateral motion – e.g., the BLF vehicle can accelerate laterally
with a small tilting and can tilt with lateral acceleration close
to zero.

There are two main advantages of the BLF model compared
to a more accurate multi-parametric and coupled model for the
particular multi-rotor aerial vehicle at hand. First, the BLF
model is much simpler and requires the identification and
use of only one actuation parameter – namely fxy . Second,
the BLF model can be made asymptotically stable using a
controller (see [8]) that is analytically proven to converge and
it has been experimentally demonstrated to effectively stabilize
real multirotor platforms modeled as BLF, such as the platform
shown in Fig. 1. More accurate models are possible [11],
however, they require complex identification procedures of
many parameters, which may be impractical. Furthermore, due
to their complexity, they can be controlled only resorting to
numerical optimization-based control, which typically requires
a high computational power that may not be available onboard.
Last but not least, such numerical methods do not typically
have an analytical guarantee of asymptotical stabilization.

A BLF vehicle can be stabilized along a time-varying and
full-pose reference trajectory qr(t) = (prR(t),Rr(t)) using
the analytically proven control law presented in [8], which
has the following form:

fR = satUxy
(
(f>r RRe1)e1+ (f>r RRe2)e2)

)
+ (f>r RRe3)e3 ,

(6)
τR = ωR × JRωR −KReR −Kωeω−
− JR

(
[ωR]×R

>
RRdω

d
R −R>RRdω̇

d
R

)
, (7)

where

fr = mR(v̇rR + ge3)−Kpep −Kvev . (8)

Considering the goal of this paper, we omit the details for the
sake of compactness and readability, and we refer the reader
to [8] for the exact definition of all the terms in the controller
as well as its stability proof. In the next section, we focus on
the discussion of the parameters used in this control law.
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III. DISCUSSION ON THE CONTROL PARAMETERS AND
NEED FOR AUTOMATIC TUNING

The BLF model (1)–(5) has three parameters: mR, JR,
and fxy , which are all used in the corresponding controller
in (6)–(8) together with the four additional sets of parameters
representing the control gain matrices Kp, Kv , KR, and Kω .
In the following, we analyze each parameter from the point
of view of interdependency and easiness of identification with
methods available in the state of the art.

A. Inertial Parameters
The inertial parameters mR and JR have clear physical

meaning and their offline identification or online estimation is
rather straightforward and established (see, e.g., [12] and [13]).
Furthermore, their nominal values are typically accurate be-
cause they can be retrieved from the CAD model of the system.
Therefore, one can safely assume their values to be identifiable
with good accuracy using standard methods.

B. Gains of the Attitude Control loop
The gain matrices KR and Kω appear in (7) and affect

the attitude dynamics (2),(4), which is independent of the rest
of the vehicle dynamics (the position dynamics) and contains
only the parameter JR, which, as explained before, can be
fairly assumed to be known with good accuracy. Furthermore,
the attitude dynamics is fully-actuated and no limits in the
control moments appear in the BLF model. As a consequence,
the gains KR and Kω can be easily tuned independently
from the other control parameters by using standard PD tuning
methods such as the one presented in [14]. Therefore, we can
also in this case safely assume thatKR andKω are tuned with
state-of-the-art methods and do not require special attention.

C. Maximum magnitude of the Lateral Force
In a real multi-rotor platform, see [15], the maximum

magnitude of the lateral force depends on the applied vertical
component of the force and the applied full moment. Such lat-
eral bound is typically larger when the requested vertical force
exactly compensates for the gravity force and the total moment
is zero. The farther the vertical force and the moment are from
such two neutral conditions, the smaller the lateral bounds
on the horizontal component of the force. Figure 2 shows
an example feasible force set at hover and a corresponding
BLF model calculated when applying a vertical force opposing
gravity, where static hovering has been formally defined in
[16].

In the BLF model, on the contrary, fxy is a lumped constant
value. If fxy is set too small, then the controller will let the
platform behave too close to an underactuated platform, while
if fxy is set too large, it could lead to suboptimal behaviors
because it may not represent well the lateral bounds induced
by the moment and vertical force required by the task.

In conclusion, the parameter fxy plays the role of a ‘lateral-
actuation slider’, which position has to be tuned, in order to
optimize the behavior of the real controlled platform for the
particular task at hand. Such a need calls for an automated
tuning algorithm that can optimize the value of fxy based on
the controller performance.

(a) (b)

Fig. 2. (a) Feasible force set of the platform in Fig. 1 at hover. (b) The same
feasible force set with cross section at the gravity plane. The figure also shows
the BLF cylinder for the platform applying a lift force ±20% of the gravity
opposing lift.

D. Gains of the Position Control loop

The gain matrices Kp and Kv appear in (8) and affect the
position dynamics (1),(3). It is standard to assume a diagonal
structure of Kp and Kv considering the symmetry of the
model and in order to avoid an unnecessary cross-direction
coupling induced by the controller. Furthermore, thanks to
the horizontal symmetry of the model and controller, one can
assume that the fist two entries of the diagonals are equal.
Therefore, it is reasonable to assume the following structure
for Kp and Kv:

Kp = diag {kp, kp, kp,z} , (9)
Kv = diag {kv, kv, kv,z} . (10)

The choice of kp,z and kv,z affects the closed-loop vertical
dynamics along which the system has a large control authority
and is not influenced by the rest of the dynamics. Therefore
– similarly to KR and Kω – the gains kp,z and kv,z can
be tuned independently, e.g., letting the vehicle move up and
down and using standard PD tuning techniques [14].

The remaining parameters, namely kp and kv , cannot be
chosen independently from fxy , because there is a nonlinear
saturation on the lateral dynamics that depends on fxy (6).
Therefore, kp and kv have to be chosen in a way that lets
the system behave optimally in the lateral motion, while well
coping with the saturation induced by fxy .

To provide an insight into the complexity of such an
interplay, let us first consider the two extreme cases. If fxy
is chosen very small, the platform’s lateral dynamics is in
practice underactuated and the platform needs to tilt, to move
laterally. Therefore, the gains kp and kv have to be optimized
to let the position dynamics be as fast as possible but ‘slower’
than the attitude dynamics, as in a quadrotor. On the contrary,
if fxy is large, the system can move laterally (up to a certain
acceleration) without tilting, therefore there is virtually no
need to take into account the attitude dynamics in the tuning

3
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of kp and kv . On the other side, there is still the dynamics
of the motor/propeller to consider. In fact, lateral motions
without tilting require a much more ample range of propeller
spinning velocities compared to the case in which the system
moves laterally by tilting (with small fxy). This phenomenon
can be easily appreciated looking at the experiments reported
in [8]. Therefore, for large fxy , the dynamics to consider
is the motor/propeller one, which has of course different
characteristics than the attitude one.

For intermediate values of fxy , a mixture of attitude and
motor dynamics influences the optimal choice of the gains kp
and kv in a way that is hard to predict a priori.

E. Conclusions

From the discussion carried out in this section, it emerges
that there are two different types of control parameters in (6)–
(8). The first type, namely mR, JR, KR, Kω , kp,z and kv,z
can be tuned mostly independently and resorting to state-of-
the-art methods such as, e.g., physical parameter identification
using least squares approach or PD tuning. The second type,
namely fxy , kp, and kv , are tightly coupled, and their effects
on the system behavior are coupled and nonlinear and one
cannot use straightforward methods like PD tuning to tune
these parameters. In particular:
• different values of fxy may be chosen depending on the

motion task at hand, where there is no clear ’best value’
until the task is specified;

• for each value of fxy it is expected to obtain different
optimized values for kp and kv , due to the nonlinear
interplay explained before

Therefore, in the remaining of this paper, for the first
time in the literature, we focus our attention on the optimal
tuning of kp and kv for different values of fxy in real
platforms modeled and controlled as BLF. First, we describe
the automatic method used for the tuning (Sec. IV), and then
we test the presented method on a real platform. These tests
demonstrate the existence of the expected dependency as well
as the improvement of the controller performance following
the presented tuning method (Sec. V).

Note that the stability of the controller against unmodeled
and external disturbances following the choice of kp and kv
has been thoroughly studied in Appendix B.

IV. DATA-BASED PARAMETER TUNING ALGORITHM

The optimization algorithm that is used to tune the gains
kp and kv , for a given value of the parameter fxy , is an
instantiation of the model-free OPTIM-tune algorithm pre-
sented in [10] and requires only a measurable metric of the
performance of the controller in order to work. Further analysis
on the convergence of the OPTIM-tune algorithm can be found
in Appendix A. The overall method is a combination of two
nested loops: i) An outer loop, described in Algorithm 1, and
ii) an inner loop, also called single parameter tuning, described
in Algorithm 2.

Algorithm 1 (the outer loop) receives as input: i) the
maximum lateral force fxy (which is kept constant during the
tuning), ii) the two sets D

(1)
kp

, D
(1)
kv

that represent the intervals

Algorithm 1: Tuning of controller gains kp and kv for a
fixed fxy value.

Data: fxy , D(1)
kp

, D(1)
kv

, N and Nb
Result: optimized k?p ∈ D(1)

kp
, k?v ∈ D(1)

kv

i← 1;
while i ≤ Nb do

kv ← D
(i)
kv ;

D(i+1)
kp

← Algorithm2(D
(1) = D(i)

kp
, ξ = kv, fxy, N);

kp ← D
(i+1)
kp ;

D(i+1)
kv

← Algorithm2(D
(1) = D(i)

kv
, ξ = kp, fxy, N);

i← i+ 1
end
k?p = D

(Nb)
kp ;

k?v = D
(Nb)
kv ;

Algorithm 2: Generic single parameter tuning.

Data: D(1) = [−θ(1),+θ(1)], ξ, fxy , and N
Result: D(N) = [−θ(N),+θ(N)]
i← 1;
while i ≤ N do

calculate contraction factor ρi;
calculate candidate (i+ 1) bounds:

−θ̂(i+1) =− θ(i) + ρi(
+θ(i) − −θ(i))

+θ̂(i+1) =− θ(i) + (1− ρi)(+θ(i) − −θ(i))

execute flight test with params ξ, −θ̂(i+1), and fxy;
−f ← f(se);
execute flight test with params ξ, +θ̂(i+1), and fxy;
+f ← f(se);
if −f < +f then

D(i+1) ← [−θ̂(i+1),+θ(i)];
else

D(i+1) ← [−θ(i),+θ̂(i+1)];
end
i← i+ 1;

end

over which the gains kp and kv are optimized, and iii) two
integers, Nb and N , representing the number of iterations in
the outer and inner loop, respectively.

Algorithm 2 (inner loop, or single parameter tuning) re-
ceives as input: i) fxy and N (the same of Algorithm 1), ii) the
starting set, denoted with D (0), in which one of the two gains
(either kp or kv) will be optimized, and iii) the value of the
other parameter (either kv or kp) that is kept fixed during
the execution of Algorithm 2, denoted with ξ. The algorithm
provides as output a new set D (N), which is a contraction of
D (0) and is guaranteed to contain the optimum value of the
corresponding parameter.

Algorithm 1 executes Nb times a basic iteration, in which
two instances of Algorithm 2 are performed sequentially to
contract D

(i)
kp

and D
(i)
kv

. In the first instance, kv is kept fixed at
its current estimate and the set to which the optimal kp belongs
is contracted, thus generating an improved estimate of kp. In
the second instance – symmetrically – the new estimate of kp
is kept fixed while the set to which the optimal kv belongs
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is contracted, thus generating a new improved estimate of kv .
At the end of Algorithm 1 the optimized values of the gains
are returned in the form of the mid-values of the intervals
generated by the contractions of the last (Nb-th) iteration, i.e.,
D

(Nb)
kp

and D
(Nb)
kv

. Such mid-values are denoted with D
(Nb)

kp

and D
(Nb)

kv , respectively.
Algorithm 2 performs the set contraction implementing N

smaller consecutive contraction steps. Each step executes two
flight tests with the vehicle, using fxy as lateral force bound
and ξ as the temporarily fixed gain. The goal of each flight test
is to evaluate the effect of a new candidate for the upper and
lower bound of the set containing the gain to be optimized. A
new upper bound candidate +θ̂(i+1) is tested in the first flight
test, while a new lower bound candidate −θ̂(i+1) is tested in
the second one. Each flight test is followed by the evaluation
of a cost function f that depends on the state error se, i.e.,
the vector describing the error between the desired and the
measured state of the system during the execution of a flight
test. The candidate bound that corresponds to the test which
returned the lower value of f is used as new upper or lower
bound for the set of the estimated parameter, thus producing
the sought contraction for the particular step. This process is
repeated N times. The last obtained set D (N) is returned as
the result of the algorithm.

In our specific case, the goal is to find the optimal controller
gains that ameliorate the lateral trajectory tracking while the
platform remains as much as possible horizontal – thus ex-
ploiting at best the lateral force capability of BLF platforms. In
line with such goal, and assuming that the position trajectory
of a flight test is composed by Nc reference points, the
corresponding cost function f is defined as follows:

f(se) =

Nc∑
k=1

|ek|︸ ︷︷ ︸
fe

+
1

Q

Nc∑
k=1

|φk|︸ ︷︷ ︸
fφ

=

Nc∑
k=1

J , (11)

where |ek| is the norm of the lateral position error, |φk| is the
norm of the tilt angular error and J is the weighted error per
reference point. The parameter Q is used to weight the contri-
bution of the angular error in the overall performance index,
giving more or less importance to the fact that the platform
remains horizontal while following the position trajectory.

V. TEST OF TUNING ON A REAL PLATFORM AND
VALIDATION OF THE INTERDEPENDENCY HYPOTHESIS

We validate the proposed approach with the BLF platform
presented in [8]; the platform is referred to as the Tilt-Hex and
is shown in Fig. 1. The platform is a hexarotor constructed
from six 12” tilted propellers equally-spaced about the plat-
form center of mass. The platform has a mass of 1.8 kg, and
an inertia tensor JR = diag {11.5, 11.4, 19.4} · 10−6 kg ·m2.

In addition, the platform is endowed with an Inertial
Measurement Unit (IMU) providing acceleration and angular
velocity measurements at 1 kHz, and is tracked with a motion
capture system at 100 Hz. Both measurements are fused with
an Unscented Kalman Filter running at 1 kHz, providing an

estimate of the platform state. The motion controller runs on-
board at 1 kHz, and brushless motor controllers (BLDC ESC)
regulate the propellers’ speed using an in-house developed
closed-loop speed controller [17]. Most of the software is
developed in C++ and runs on an on-board PC, with the
exception of the gain tuning algorithm which runs in MAT-
LAB/Simulink on a ground PC. Most of the onboard software
are open source, and can be found at https://git.openrobots.org/
projects/telekyb3, while the OPTIM-tune software is available
at https://github.com/AppliedControlTechniques/Optim-tune.

A simulation and an experimental campaign have been
carried out, in which the task has been to tune the controller
gains, for the selected values of fxy and different Q ratios.
The interested reader is referred to the multimedia attachment
of this letter for the experiments’ videos. In all the experi-
ments and simulations, the lateral acceleration of the reference
trajectory has been pushed up to 1.5 ms−2, jerk to 10 ms−3,
lateral velocity to 2 ms−1, to bring the platform to its lateral
motion limits. During each of the tuning experiments, the
initial domains of the controller gains have been chosen such
that D

(1)
kp

= [10, 30] and D
(1)
kv

= [5, 15], and each domain has
been contracted N = 12 times by the inner loop in each of
the Nb = 2 outer loop iterations.

Finally, to stress the lateral position tracking and horizon-
tality of the platform (zero tilt), the reference trajectory has
been chosen as a back and forth path parallel to xW .

A. Simulative Analysis of the Cost Function Landscape

To study the cost function landscape, we simulated the
above mentioned platform with the corresponding controller,
and computed the different components of the cost function
while varying the controller positional gains kp and kv over a
discretized grid of D

(1)
kp
,D

(1)
kv

.
Fig. 3 shows the contour plots of the two components of

f(se) at fxy = 2 and fxy = 8. The functions fe and fφ
are shown separately to understand the effect of each on the
performance of the presented tuning scheme. This figure shows
that as fxy is increased from 2 to 8, the lateral position error
component fe decreases slightly for almost all values in the
given range, and the number of local minima slightly increases
as the position changes moderately. On the other hand, fφ
shows a different behavior, where it can be seen that the
number of local minima increases substantially for fxy = 8.
In addition, as fxy is increased, the values of fφ decrease
substantially; this can be seen from the different scales of the
corresponding contour plots. As such, as fxy is increased the
effect of the angular component on the overall cost function
decreases; this is similar to an increase in the Q value. This
shows the decreased effect of fφ (and correspondingly the
angular dynamics) on the tuning of the position controller
gains as fxy increases, even when Q is kept constant.

B. Experimental Test of the Tuning Algorithm

We conduct an experimental campaign to demonstrate the
tuning of the proposed algorithm and to show the relation
between the chosen fxy and the optimized controller gains.

5
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Fig. 3. Contour plots of fe(kp, kv) and fφ(kp, kv) for two different values of fxy computed via simulation on a discretization of the ranges D
(1)
kp

,D
(1)
kv

.

Fig. 4 shows the average of the optimized controller gains
and standard deviation of each for different values of fxy and
Q, where the optimization at each fxy and Q value have been
repeated thrice. This figure shows that as fxy increases, the
optimized kp increases and the optimized kv decreases for
both Q values. In the case of Q = 300, the contribution
of fφ is reduced substantially leading to higher optimized kp
and kv values as the optimization allows for more aggressive
position tracking without taking the angular tracking error into
consideration.

In order to get an improved understanding of how the
algorithm operates, we show the evolution of the optimization
for two of the above optimization cases, corresponding to
fxy ∈ {2, 8} at a constant Q = 50. Fig. 5 shows the
corresponding evolution for fxy = 2 and fxy = 8. This figure
shows the evolution of the controller gains and the resulting
performance index for each of the two fxy values. These
experiments clearly show the improved trajectory tracking of
the controller with the optimized gains, and that while the
initial controller gains are the same for both experiments,
the optimized gains vary substantially for different values of
fxy , supporting the interdependence of such parameters that
is claimed in this work.

VI. CONCLUSIONS

In this letter, we studied the interplay between the parame-
ters and gains of the BLF platform while controlled via a full-
pose controller. We showed that the optimally chosen position
control gains rely largely on the estimated lateral force limit.

While one can fix the estimated lateral force limit at one of
its extreme values, we discussed the effect of these extremes,
where if the limit is chosen small enough the platform behaves
as an underactuated one, while if chosen large enough, it might
exceed the physical capabilities of the platform, and thus the
controller could behave sub-optimally.

We then presented a detailed method for the auto-tuning
of the position control gains for different estimated lateral

1 2 4 6 8

5

10

15

20

25

30

(a) Q = 50

1 2 4 6 8

5

10

15

20

25

30

(b) Q = 300

Fig. 4. Optimized gains (kp, kv) of the position controller versus fxy for
two values of the weighting ratio Q. For each optimized gains, we show the
average value and the standard deviation bar computed from three repetitions
of each experiment.

force limits, and showed how these optimized gains vary
accordingly. However, the choice of this parameter is still an
open question, where for each application, different values of
the lateral force limit should be chosen. Moreover, based on
the applied lift force, this parameter has to be changed with
the corresponding optimized gains. As such, in the future, we
propose to apply a gain scheduling approach to choose online
the ‘best’ value of fxy and the corresponding optimized gains.
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Fig. 5. Evolution of the gain tuning algorithm for fxy = 2 and fxy = 8 while Q = 50 showing the controller gains kp, kv , and the cost function f(se)
for N = 12 and Nb = 2.
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APPENDIX A
DISCUSSION OF OPTIMIZATION ISSUES IN OPTIM-TUNE

The OPTIM-tune method is based on zero-order one-
dimensional search, as in the case of Piyavskii’s algorithm
[18], or of Timonov’s [19] and Shoen’s [20], formed here
in sequences named bootstraps. The OPTIM-tune algorithm
assumes that f (the cost function) is a continuous function,
with a finite number of local minima in its search interval
D

(i)
j . We do note that the zero-order one-dimensional search

requires f to hold a strongly quasiconvex property which we
will prove to hold at least in the subintervals of the search
interval. Note that the proof the following propositions (1-3)
can be found in [21].

Proposition 1. Let f be a continuous function over an
interval [a, b] with a finite number of locally optimal minima.
Then there exists a strictly positive number p such that f is
either strongly quasiconvex or strongly quasiconcave over any
[q, q + p], with q ∈ [a, b− p].

Proposition 2. Let f be a continuous function over an
interval [a, b]. If there exists a finite number of locally optimal
minima, then there exists a strictly positive number p such that
f is either strongly quasiconvex or strongly quasiconcave over
any [q, q + p], with q ∈ [a, b− p].

Corollary 1. Following Proposition 1 and 2, it is guaranteed
that f is strongly quasiconvex over the contracted subintervals
of its search domain, even if it was not strongly quasiconvex
over its initial search domain.

In what follows, we aim at providing a proof that globally
ε-optimal points of strongly quasiconvex functions can be
efficiently found by zero-order optimization algorithms.

Proposition 3. Let f be a continuous strongly quasiconvex
function over an interval [a, b]. Let φl (l = 1, . . . , 4) denote
four evaluation points, φ(i)

j < φ
(i)
j+1 at the i-th iteration of

the Fibonacci search. In this case, the one-dimensional search
fails to detect whether f is strongly quasiconvex or not if and
only if f(φ

(i)
1 ) ≤ f(φ

(i)
3 ) ≤ f(φ

(i)
4 ) ≤ f(φ

(i)
2 ) for all i or,

f(φ
(i)
1 ) ≥ f(φ

(i)
3 ) ≥ f(φ

(i)
4 ) ≥ f(φ

(i)
2 ) for all i.

Corollary 2. From Proposition 3 it holds that if the four
considered points form neither a monotone increasing, nor
monotone decreasing sequence, an ε-optimal solution inside
a subinterval is guaranteed to exist.

The theorem given in [22] states that if f is a Lipschitz
function with constant L over the interval [a, b], and f is
assumed to have a finite number of locally optimal points,
then there exists a tolerance ε, upper bounded by the distance
between two locally optimal points, which guarantees ε-
convergence. The Fibonacci algorithm used here guarantees
that a globally ε-optimal solution is found within D

(i)
j for an

unimodal function. The OPTIM-tune method is, in addition,
insensitive to such common problems as flat nature of the f
function over an interval, where other algorithms might fail
(such as Piyavskii’s or Hansen, Jaumard and Lu’s algorithms
[23]).

Now let us consider the multivariate property of f . Let
f(θ1, θ2) be a unimodal function within acceptable ranges of
its parameters. For arbitrary a(i) ∈ D

(i)
1 and b(i) ∈ D

(i)
2 , the

functions f(θ1, b
(i)) and f(a(i), θ2) are unimodal, and can be

denoted as ψ(θ) with a corresponding range [α, β].
Proposition 4. The contracted range of ψ(θ) always con-

tains its minimum.

Proof. Let us denote by θ∗ as the minimum of ψ(θ) in the
range [α, β], and by θ(1), θ(2) as two arbitrary variables such
that α ≤ θ(1) ≤ θ(2) ≤ β.

if α ≤ θ(1) < θ(2) ≤ θ∗ then ψ(θ(1)) > ψ(θ(2)) (12)

and if θ∗ ≤ θ(1) < θ(2) ≤ β then ψ(θ(1)) < ψ(θ(2)) (13)

Then by contracting the range of ψ(θ) following Alg.2, θ∗

will always be contained in the contracted range.

Proposition 5. OPTIM-tune has a natural escaping capabil-
ity (see [24] for definition), when reduction of the subinterval
takes place (Alg.2).

Proof. It was proven in [25] that zero-order algorithms avoid
strict saddle points and guarantee convergence to local optima.
Moreover, In Alg.1 the escaping capability is further ensured
due to bootstraping and altering optimization variables, to
enable finding an improved minima.

As such, and following the above propositions, the OPTIM-
tune method finds the ε-optimal point in the original search
domain by contracting the mentioned interval into subintervals.
The contractions guarantee that the ε-optimal will always be
contained in the corresponding subinterval, while ensuring the
escaping capability. Finally, the presented algorithm contracts
these intervals in an exponential manner, while altering the
optimization variables, and as such, finding an ε-optimum in
a short number of iterations.

APPENDIX B
ROBUSTNESS ISSUES FOR A LINEARIZED MODEL

A. Preliminaries

While the OPTIM-tune method does not require any knowl-
edge of the UAV model, it does require an initial range of
gains in which it tries to find the optimal value, and in which
the controller is assumed to perform in a stable manner.
These may result either from initial test flights, or through
the analysis of simulation-based flights. In what follows, we
assess the stability of the used controller [8] against external
disturbances.
First, let us linearize the system around the working points
from the problem above. To do so, let us define the following
notations:

8
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notation definition dimension
R Rotation matrix of FR in FW R3×3

θ rotation angle about yW R
θd desired rotation angle about yW R
ep position error in FW R3

ev linear velocity error in FW R3

eR angular error in FW R3

eω angular velocity error in FR R3

JR Inertia Matrix in FR R3x3

epx position error in xR R
evx linear velocity error in xR R
Kp position gain matrix R3×3

Kv linear velocity gain matrix R3×3

Kω angular velocity gain matrix R3×3

KR angular gain matrix R3×3

Further, we assume all gain matrices to be diagonal matrices
as follows: Kp = diag(kp, kp, kpz), Kv = diag(kv, kv, kvz),
Kω = diag(kωx, kωy, kωz), and KR = diag(kRx, kRy, kRz).
Similarly, we assume the inertia matrix to be a diagonal
matrix such that JR = diag(J11, J22, J33). Finally, fr
is divided about the different axes of FW axes such as
fr = {frx, fry, frz} and ω is divided about the different axes
of FR such as ω = {ωx, ωy, ωz}.

B. Mass uncertainty
In the following formulation, we assume a constant ref-

erence consisting of a motion along the x axis, and rotation
about the roll angle θ, while assuming the motion and rotation
about all other axes to be negligible, and Rr = I. Following
the above assumptions, the attitude controller boils down to
the stabilization of the following error term:

eθ = θ − θd , (14)

geometrically, to check if fr ∈ Uxy ( condition (33) from [8])
it is enough to check the following:

find θ such that Ry(θ)fre1 ≤ fxy. (15)

If (15) holds, θd = 0 and eθ = θ, otherwise, the optimization
problem from [8] will reduce to finding an equality from (15),
as such:

Ry(θd)fre1 = fxy , (16)
frx cos(θd) + frz sin(θd) = fxy , (17)

θd = 2tan−1

frz ±
√
||fr||2 − fxy

2

frx + fxy

 . (18)

Let frx = −kpepx − kvevx and frz = mg − kpzepz − kvzevz
(as previously defined). By assuming that kpzepz + kvzevz to
be negligible compared to mg, we can simplify frz such as
frz = mg. As such

θd = 2tan−1

mg ±
√

(mg)2 + k2
pe

2
px + k2

ve
2
vx − fxy

2

−kpepx − kvevx + fxy

 . (19)

A regulation task is considered, thus to have stable hovering
it must hold that epx = px − pdx = px, evx = vx − vdx = vx,
and θd should be expanded around px = 0, vx = 0, to obtain

θ̂d = a+ b1px + b2vx . (20)

Thus, the plant and controller state space model can be written
as follows:

ṗ = v , (21)

v̇ = − 1

m
RKppx −

1

m
RKvvx , (22)

Ṙ = R [ω]X , (23)

ω̇ = −J−1
R KR

 0
θ − a− b1px − b2vx

0

+

−J−1
R Kωω , (24)

where a, b1 and b2 result from a Taylor series expansion.
Following the previously stated assumptions, R = Ry(θ),

R =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 =

 r1 0 r2

0 1 0
−r2 0 r1

 .(25)

In addition to the previous assumptions, let us assume that
the platform is near hover. Following the above assumptions,
θ and ω2 are assume to be near zero, while ω1 and ω3 are
considered negligible. As such, r1 ≈ 1, r2 ≈ θ, ω1 = ω3 =
r1ω3 = 0. Moreover, we can assume py = vy = vz = 0, and
ez = ey = 0. As such, the state space model of the plant and
controller can be reduced to the following:

ṗx = vx , (26)

v̇x = − 1

m
(kppx + kvvx) , (27)

v̇z = 0 , (28)
ṙ1 = 0 , (29)
ṙ2 = ω2 , (30)

ω̇1 = −kωx
J11

ω1 , (31)

ω̇2 = −kωy
J22

ω2 +
kRx
J22

(a+b1px+b2vx−θ) , (32)

ω̇3 = −kωz
J33

ω3 . (33)

.
Following the above linearization of the system, we intro-

duce a parametric uncertainty in the mass of the UAV; the
uncertainty is modeled in m such as 1

m = 1
m◦+pmδm

, where
m◦ is a nominal mass, pm defines a range for uncertain
mass and δm is an uncertainty of unknown magnitude. As
all the mathematical models of physical system suffer from
inaccuracies, which might also result from non-exact mea-
surements of no possibility to identify the phenomena which
govern complex dynamical systems, let a simple model plus
uncertainty of be considered. The derivation will consider x
axis terms

In order to test the robust stability, the influence that the
considered uncertainty can exert on the relations in the system

9
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is examined. Let the two signals be introduced, u∆ as the input
to the uncertainty, and y∆ as the output,

ṗx = vx , (34)
v̇x = u∆ , (35)

u∆ = − 1

m◦
((KP11px + kvvx)− y∆) , (36)

y∆ = m◦δmu∆ . (37)

Having assumed zero initial conditions, and doing the
Laplace transform (KP11 = kp, kv = kv)

M(s) =
U∆(s)

Y∆(s)
=

−s2

m◦s2 + kvs+ kp
(38)

As

1

1−M(s)m◦δm
=

m◦s2 + kvs+ kp
m◦(1 + δm)s2 + kvs+ kp

(39)

is proper, we concur there is no destabilizing uncertainty, as
per Routh stability criterion m◦(1 + δm) > 0, kp > 0, kv > 0
at all times.

Since [26] 1−M(s)m◦δm has a proper and stable inverse
for all δm ∈ ∆, where ∆ describes the uncertainty set,
then the controller robustly stabilizes the considered uncertain
plant against ∆. Equivalently, since there exists r such that
‖M‖∞ ≤ 1

r holds, with |m◦δm| < r and δm ∈ ∆, then
1−M(s)m◦δm has a proper and stable inverse for all δm ∈ ∆,
as per small gain theorem (see Fig. 6, with r = 1, m = 1,
kp = 20, kv = 10).
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-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

L
m

 [
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B
]

Fig. 6. Log-magnitude plot of M (vide small-gain theorem)

For larger values of kp and kv (which define the first two di-
agonal terms in KP and KV ) the left part of the plot moves up,
which means we have lower capability to reject possible low-
frequency uncertainty, what forms a natural bound expressed
by reducing robustness against such uncertainties. As the range
of gains remains unknown, there is a need to optimize them
for a given fxy . In addition, as the method allows one to feed a
reference primitive with selected dynamics, OPTIM-tune can
find optimized controller gains to improve tracking. Shaping
the loop to have narrow-bandwidth like properties, resembles
the results obtained from robustness issues optimization.

C. Sensitivity vs. complementary sensitivity

On the basis of the first-order Taylor expansion of (18) at
ex0 = ex0 = 0 one gets

a = 2tan−1

mg ±
√

(mg)2 − fxy
2

fxy

 , (40)

b1 :=

2kp

(
mg ±

√
(mg)2 − fxy

2
)

fxy
2

+

(
mg ±

√
(mg)2 − fxy

2
)2 , (41)

=
kp
mg

(42)

b2 :=

2kv

(
mg ±

√
(mg)2 − fxy

2
)

fxy
2

+

(
mg ±

√
(mg)2 − fxy

2
)2 , (43)

=
kv
mg

. (44)

Now, having assumed that θ ≈ 0 we get sin(θ) ≈ θ,
cos(θ) ≈ 1, and by additionally assuming ω2 ≈ 0, our
equations simplify to the following:

u = [ux, uy]T . (45)

these can be re-written into the following form:

ṗx = vx , (46)

v̇x = − 1

m
ux −

1

m
uv , (47)

ṙ13 = ω2 , (48)

ω̇1 = −kωx
J11

ω1 , (49)

ω̇2 = −kry
J22

r2 −
kωy
J22

ω2

+
b1kry
J22kp

epx +
b2kry
J22kv

evx +
akry
J22

, (50)

ω̇3 = −kωz
J33

ω3 . (51)

As per θ̇ = ṙ2 = ω2 and

u = Kxex =

[
kp 0
0 kv

] [
epx
evx

]
, (52)

the system reduces to (ω1 = 0, ω3 = 0)

ṗx = vx , (53)

v̇x = − 1

m
ux −

1

m
uv , (54)

θ̇ = ω2 , (55)

ω̇2 = −kωy
J22

ω2 −
kry
J22

θ

+
b1kry
J22kp

ux +
b2kry
J22kv

vx +
akry
J22

, (56)

where a, b1, b2 result from Taylor expansion of θd.

10
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Let us consider a triplet of external disturbances acting on
the system as: an additive linear force, an additive torque, and
a another one to model the term akry

J22
, in the form

∆v, ∆′ω, ∆a , (57)

respectively, norm-bounded (infinity norm) to 1. Our system
of equations can thus be rewritten in the following form:

ṗx = vx , (58)

v̇x = − 1

m
ux −

1

m
uv + δv∆v , (59)

θ̇ = ω2 , (60)

ω̇2 = −kωy
J22

ω2 −
kry
J22

θ +
b1kry
J22kp

ux +
b2kry
J22kv

uv +

+δω′∆ω′ + δa∆a . (61)

Having assumed zero initial conditions, and incorporating
δω′∆ω′ + δa∆a into δω∆ω , with evx = ėpx, it holds that

sPx(s) = Vx(s) , (62)

sVx(s) = − 1

m
Ux(s)− 1

m
Uv(s) + δv∆v(s) , (63)

sΘ(s) = Ω2(s) , (64)

sΩ2(s) = −kωy
J22

Ω2(s)− kry
J22

Θ(s) +
b1kry
kpJ22

Ux(s)

+
b2kry
kvJ22

Uv(s) + δω∆ω(s) . (65)

where uv = kvevx = kv ėpx = ku̇x = ku̇x with k = kv
kp

.
The above systems can be reduced as follows:

Vx(s) = −ks+ 1

sm
Ux(s) +

δv
s

∆v(s) , (66)

sΩ2(s) = − 1

J22

(
kry
s

+ kωy

)
Ω2(s) +

+
1

kpJ22
(sb2kry + b1kry)Ux(s)

+δω∆ω(s) (67)

and

Vx(s) = −ks+ 1

sm
Ux(s) +

δv
s

∆v(s) , (68)

Ω2(s) =
s2b2kry + sb1kry

s2kpJ22 + skpkωy + kpkry
Ux(s) +

+
skpJ22δω

s2kpJ22 + skpkωy + kpkry
∆ω(s) . (69)

what can be presented as
[
Vx(s)
Ω2(s)

]
=

 − ks+1
sm

δv
s

0

s2b2kry+sb1kry

s2kpJ22+skpkωy+kpkry
0

skpJ22δω

s2kpJ22+skpkωy+kpkry


Ux(s)

∆v(s)
∆ω(s)

 . (70)

Taking the connection between Ux(s) and Px(s) in the form

L1(s) = −kP
ks+ 1

sm
(71)

T1(s) =
L1(s)

1 + L1(s)
= −

kP
ks+1
sm

1− kP ks+1
sm

= (72)

= − kP (ks+ 1)

ms− kP (ks+ 1)
=

kvs+ kp
(kv −m)s+ kP

, (73)

S1(s) =
1

1 + L1(s)
= − sm

(kv −m)s+ kp
, (74)

and also between Uv(s) = sUx(s) and Ω2(s) in the form

L2(s) = kv
sb2kry + b1kry

s2kpJ22 + skpkωy + kpkry
, (75)

T2(s) =
L2(s)

1 + L2(s)
=

kv
sb2kry+b1kry

s2kpJ22+skpkωy+kpkry

1 + kv
sb2kry+b1kry

s2kpJ22+skpkωy+kpkry

= (76)

=
skvb2kry + kvb1kry

s2kpJ22 + skpkωy + kpkry + skvb2kry + kvb1kry
=(77)

=
skvb2kry + kvb1kry

s2kpJ22 + s(kpkωy + kvb2kry) + kry(kp + kvb1)
,(78)

S2(s) =
1

1 + kv
sb2kry+b1kry

s2kpJ22+skpkωy+kpkry

= (79)

=
s2kpJ22 + skpkωy + kpkry

s2kpJ22 + s(kpkωy + kvb2kry) + kry(kp + kvb1)
.(80)

At this point, naturally the following constraints appear,
related to Routh stability criterion:

kv −m > 0 , (81)
kp > 0 , (82)

kp + kvb1 > 0 , (83)
kpkωy + kvb2kry > 0 , (84)

as

kv > m , (85)
kp > 0 , (86)

giving natural bounds on controller gains. Please note that
the transfer functions are of second-order, and as per Nyquist
stability criterion, the closed-loop system has a simple stability
conditions.

In the potential analysis, and following [26], a MULTI-
PLICATIVE uncertainty ∆(s) acting at a plant P (s) output
can be included, the transfer function between the output of
the uncertainty and its input equals −T1(s) or −T2(s). By the
small gain theorem, these sub-systems remain stable for

‖∆(jω)‖∞‖T (jω)‖∞ < 1 (87)

what corresponds to all the plants in the form P (s)(1+∆(s))
for ‖∆(jω)‖∞ < r where ‖T (jω)‖∞ < 1

r .
Considering an ADDITIVE uncertainty ∆(s) acting on the

plant P (s), the transfer function between the output of the
uncertainty and its input equals C(s)S1(s) or C(s)S2(s),
where the plant is given by P (s) + ∆(s) and C(s) is the
transfer function of the controller. By the small gain theorem,
these sub-systems remain stable for

‖∆(jω)‖∞‖C(jω)S(jω)‖∞ < 1 . (88)

Abiding the constraints, the closed-loop systems remain
stable whenever in the model (m = 1.8, kry = 7, kωy = 0.7,
J22 = 11.4 · 11−6) it holds that kp > 0 and kv > m.

It can be seen from Figures 7 and 8 that ‖T1‖∞ and ‖T2‖∞
are always norm-bounded, ‖T2‖∞ is always below 1, while
‖T1‖∞ is below 1 for low frequencies. As such, the linear con-
troller is robust to the aforementioned external disturbances,
while the attitude controller is robust to these disturbances
only when these disturbances have a low frequency.
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Fig. 7. Complementary sensitivity function T1(jω) for fxy = 4, kp = 25,
kv = 10
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Fig. 8. Complementary sensitivity function T2(jω) for fxy = 4, kp = 25,
kv = 10
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