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Optimal Tuning of the Lateral-Dynamics Parameters
for Aerial Vehicles with Bounded Lateral Force

Dariusz Horla1∗, Mahmoud Hamandi2∗, Wojciech Giernacki1, Antonio Franchi2,3

Abstract—This letter shows for the first time why it is im-
portant and how to optimize the gains of a position controller
on board of a fully-actuated aerial vehicle with bounded lateral
force, via an auto-tuning approach. In such vehicles, most of the
control authority is expressed along a principal thrust direction,
while along the lateral directions smaller forces can be exploited
to achieve full-pose tracking. The nonlinear and hard to model
interplay between the constraint imposed on the lateral force
and the gains of the position controller is overcome employing
the OPTIM-tune calibration method. Several experimental tests,
performed fully autonomously during flight, clearly show the
practicability and benefits of the approach.

Index Terms—Aerial Systems: Mechanics and Control, Aerial
Systems: Applications, Motion Control.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAV)s have been widely
studied in the literature with applications varying be-

tween search and rescue [1], fire fighting [2] and, more
recently, aerial physical interaction [3].

Most UAV applications rely on the use of collinear/coplanar
platforms [1], [2], [4], such as quadrotors, hexarotors or
octorotors, where all propellers are coplanar and provide thrust
in a direction parallel to the platform’s vertical axis. While
the use of these platforms allowed the advancement of UAV
research in the above mentioned fields, they lack the ability of
applying lateral forces and thus need to tilt to move laterally.

Different designs from the literature overcome this limi-
tation by adding additional propellers that can apply lateral
forces. Romero et al. [5] add four propellers to a quadrotor
along the major lateral directions to move sideways. Similarly,
Albers et al. [6] add an extra propeller that produces thrust
perpendicular to the four main propellers. Conversely, Ryll et
al. [7] apply lateral motion by tilting each of the propellers of
a quadrotor independently.
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Recently, all these platforms that can apply lateral forces in
body frame have been grouped in the abstract class of Bounded
Lateral Force (BLF) UAVs, firstly introduced in [8]. Unlike the
more popular quadrotors, these platforms can apply a lateral
force in their body frame thanks to tilted propellers, similar
to the example platform shown in Fig. 1. BLF platforms
can move laterally without the need of tilting, they can tilt
without the need of moving laterally, and can interact with the
environment with multiple force directions while maintaining
an independent desired orientation. In its simplest and more
effective representation, among the ones introduced in [8], a
BLF platform’s feasible force set is modeled as a cylinder
which radius, noted as rxy , which represents the maximum
allowable lateral force in any horizontal direction.

The geometric controller presented in [8] requires the iner-
tial parameters of the platform, and tuned gains of the attitude
and position controllers; similar controllers have been also
proposed in the literature, such as the controller presented
in [9]. The inertial parameters of the platform can be easily
estimated from the platform geometry, and do not depend
on the controller gains. Similarly, the attitude controller has
a larger authority than the position controller, and thus can
be tuned using standard tuning methods, independently of
the chosen position controller. The position controller merits
further explanation; where as can be seen from Fig. 2 the
lateral force limits are coupled with the applied lift force. Since
rxy is an estimate of the actual maximum lateral side force
allowed by the platform for the current lift, it is difficult to
chose a priori the best value for this parameter.

Furthermore the choice of rxy can substantially affect the
platform’s performance, where if chosen to be near zero,
the platform acts as an underactuated one, with a strong
coupling between the position and attitude dynamics. If rxy
is chosen to be large enough, the platform behaves as a fully-
actuated one, and the position and attitude dynamics become
decoupled; special consideration has to be given as not to
exceed platform’s physical limits at the applied lift.

In this paper, we aim to experimentally study the above-
mentioned interplay between the chosen maximum lateral
force and the position dynamics. To be able to systematically
tune the controller gains for each chosen rxy value, we use the
recently introduced Optim-tune algorithm [10]. The method
described in [10] performs auto-tuning of controllers, where
the tuning is done in cycles, composed of stages where a
particular gain is tuned, and the remaining held fixed [10].
The method finds the optimal gains that maximize a designed
performance index, and as such can be scaled to tune any of
the controller gains affecting the desired performance.
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Fig. 1. Considered hexarotor with tilted propellers (Tilt-Hex)

The rest of this letter is structured as follows: Sec. II
presents the UAV model and the BLF controller. Sec. III
analyzes carefully the parameters of the BLF controller, and
discusses the corresponding interdependency. Sec. IV summa-
rizes the tuning algorithm and its use for the tuning of the BLF
controller. Finally, Sec. V shows the experimental analysis of
the proposed method, and Sec. VI concludes the letter.

II. MODELING AND CONTROL OF FULLY ACTUATED
UAVS WITH BOUNDED LATERAL FORCE

In this section, we briefly describe the modeling and control
of fully-actuated aerial vehicles with Bounded Lateral Force,
in order to introduce the parameters whose automatic tuning
represents the goal of the proposed method. A BLF model is
a powerful and simple abstraction of several different multi-
rotor designs, including, e.g., underactuated, fully-actuated,
multi-directional thrust, and thrust vectored designs. For a
detailed description of the BLF model and its relation with
real multirotor designs, we refer the reader to [8], where all
these concepts were introduced.

We define an inertial world frame FW with origin OW and
axes {xW , yW , zW }, and a robot frame FR, attached to the
vehicle, with origin OR and axes {xR, yR, zR}, where OR
coincides with the Center of Mass (CoM) of the vehicle. We
denote by pR ∈ R3 and RR ∈ SO(3) the position of OR in
FW and the rotation matrix describing the orientation of FR
with respect to (w.r.t.) FW , respectively. The linear velocity of
OR in FW is denoted with vR ∈ R3 and the angular velocity
of FR w.r.t. FW expressed in FR is denoted with ωR ∈ R3.
Finally, mR ∈ R>0 and JR ∈ R3×3

>0 denote the vehicle mass
and moment of inertia w.r.t. to OR in FR, respectively.

Following the Newton-Euler formalism, we can write the
equations of motion of this rigid body as

ṗR = vR (1)

ṘR = RR[ωR]× (2)
mRv̇R = −mR g e3 +RRfR , (3)
JRω̇R = −ωR × JRωR + τR , (4)

where [•]× is the skew-symmetric operator, e3 is a unit
vector along zW , g is the gravitational constant, and fR =
[ux, uy, uz]

> ∈ Uf ⊂ R3 and τR ∈ R3 are the total control
force and moment applied on OR in FR, respectively, and Uf
represents the set of feasible forces in the robot frame. A BLF
vehicle is characterized by the particular structure of the set

Uf , namely, it is Uf = Uxy × R≥0, where Uxy is the set of
feasible lateral forces defined as

Uxy = {[ux, uy]> ∈ R2|u2x + u2y ≤ r2xy}. (5)

The distinguishing feature of the BLF model is the presence
of the parameter rxy > 0, which represents the maximum
intensity of lateral (horizontal) force that the BLF vehicle can
produce in FR. The smaller rxy , the closer the BLF vehicle
resembles an underactuated multirotor (e.g., a quadrotor) and
as a consequence, the more coupled are its lateral motion and
attitude – e.g., a lateral acceleration requires a non-zero tilting
of the vehicle. The larger rxy , the more decoupled can be
its orientation and lateral motion – e.g., the BLF vehicle can
accelerate laterally with a small tilting and can tilt with lateral
acceleration close to zero.

There are two main advantages of the BLF model compared
to a more accurate multi-parametric and coupled model for the
particular multi-rotor aerial vehicle at hand. First, the BLF
model is much simpler and requires the identification and
use of only one actuation parameter – namely rxy . Second,
the BLF model can be made asymptotically stable using a
controller (see [8]) that is analytically proven to converge
and it has been experimentally demonstrated to effectively
stabilize real multirotor platforms modeled as BLF. More
accurate models are possible [11], however, they require
complex identification procedures of many parameters, which
may be impractical. Furthermore, due to their complexity, they
can be controlled only resorting to numerical optimization-
based control, which typically requires a high computational
power that may be not available onboard. Last but not least,
such numerical methods do not have typically an analytical
guarantee of asymptotical stabilization.

A BLF vehicle can be stabilized along a time-varying and
full-pose reference trajectory qr(t) = (prR(t),Rr(t)) using
the analytically proven control law presented in [8], which
has the following form:

fR = satUxy
(
(f>r RRe1)e1+ (f>r RRe2)e2)

)
+ (f>r RRe3)e3

(6)
τR = ωR × JRωR −KReR −Kωeω−
− JR

(
[ωR]×R

>
RRdω

d
R −R>RRdω̇

d
R

)
, (7)

where

fr = mR(v̇
r
R + ge3)−Kpep −Kvev . (8)

Considering the goal of this paper, we omit the details for the
sake of compactness and readability, and we refer the reader
to [8] for the exact definition of all the terms in the controller
and the stability proof. In the next section, we focus on the
discussion of the parameters used in this control law.

III. DISCUSSION ON THE CONTROL PARAMETERS AND
NEED FOR AUTOMATIC TUNING

The BLF model (1)–(5) has three parameters: mR, JR,
and rxy , which are all used in the corresponding controller
in (6)–(8) together with the four additional sets of parameters
representing the control gain matrices Kp, Kv , KR, and Kω .
In the following, we analyze each parameter from the point
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of view of interdependency and easiness of identification with
methods available in the state of the art.

A. Inertial Parameters

The inertial parameters mR and JR have clear physical
meaning and their offline identification or online estimation is
rather straightforward and established (see, e.g., [12] and [13]).
Furthermore, their nominal values are typically accurate be-
cause they can be retrieved from the CAD model of the system.
Therefore, one can safely assume their values to be identifiable
with good accuracy using standard methods.

B. Gains of the Attitude Control loop

The gain matrices KR and Kω appear in (7) and affect
the attitude dynamics (2),(4), which is independent of the rest
of the vehicle dynamics (the position dynamics) and contains
only the parameter JR, which, as explained before, can be
fairly assumed to be known with good accuracy. Furthermore,
the attitude dynamics is fully-actuated and no limits in the
control moments appear in the BLF model. Thanks to the
large control authority of the moment actuation and relatively
small inertia of multi-rotor platforms, the gains KR and Kω

can be easily tuned independently from the other control
parameters by using standard PD tuning methods such as the
one presented in [14]. Therefore, we can also in this case
safely assume that KR and Kω are tuned with state-of-the-
art methods and do not require special attention.

C. Maximum Intensity of the Lateral Force

In a real multi-rotor platform, see [15], the maximum
intensity of the lateral force depends on the applied vertical
component of the force and the applied full moment. Such
lateral bound is typically larger when the requested vertical
force exactly compensates for the gravity force and the total
moment is zero. The farther the vertical force and the moment
are from such two neutral conditions the smaller are the
lateral bounds on the horizontal component of the force.
Figure 2 shows an example feasible force set at hover and a
corresponding BLF model calculated when applying a vertical
force opposing gravity.

In the BLF model, on the contrary, rxy is a lumped constant
value. If rxy is set too small then the controller will let the
platform behave too close to an underactuated platform, if rxy
is set too large, it could lead to suboptimal behaviors because
it may not represent well the lateral bounds induced by the
moment and vertical force required by the task.

In conclusion, the parameter rxy plays the role of a ‘lateral-
actuation slider’, which position has to be tuned, in order to
optimize the behavior of the real controlled platform for the
particular task at hand. Such a need calls for an automatic
tuning algorithm that can optimize the value of rxy based on
the controller performance.

D. Gains of the Position Control loop

The gain matrices Kp and Kv appear in (8) and affect the
position dynamics (1),(3). It is standard to assume a diagonal

(a) (b)

Fig. 2. (a) Feasible force set of the platform in Fig. 1 at hover. (b) Same
feasible force set with cross section at the gravity plane. The figure also shows
the BLF cylinder for the platform applying a lift force ±20% of the gravity
opposing lift.

structure of Kp and Kv considering the symmetry of the
model and in order to avoid an unnecessary cross-direction
coupling induced by the controller. Furthermore, thanks to
the horizontal symmetry of the model and controller, one can
assume that the fist two entries of the diagonals are equal.
Therefore, it is reasonable to assume the following structure
for Kp and Kv:

Kp = diag {kp, kp, kp,z} , (9)
Kv = diag {kv, kv, kv,z} . (10)

The choice of kp,z and kv,z affects the closed-loop vertical
dynamics along which the system has a large control authority
and is not influenced by the rest of the dynamics. Therefore
– similarly to KR and Kω – the gains kp,z and kv,z can
be tuned independently, e.g., letting the vehicle move up and
down and using standard PD tuning techniques [14].

The remaining parameters, namely kp and kv , cannot be
chosen independently from rxy , because in (6) there is a
nonlinear saturation on the lateral dynamics that depends on
rxy . Therefore, kp and kv have to be chosen in a way that lets
the system behave optimally in the lateral motion, while well
coping with the saturation induced by rxy .

To provide an insight into the complexity of such interplay,
let us first consider the two extreme cases. If rxy is chosen
very small, the platform’s lateral dynamics is in practice
underactuated and the platform needs to tilt, to move laterally.
Therefore, the gains kp and kv have to be optimized to let
the position dynamics be as fast as possible but ‘slower’ than
the attitude dynamics, as in a quadrotor. On the contrary, if
rxy is large, the system can move laterally (up to a certain
acceleration) without tilting, therefore there is virtually no
need to take into account the attitude dynamics in the tuning
of kp and kv . On the other side, there is still the dynamics
of the motor/propeller to consider. In fact, lateral motions
without tilting require a much more ample range of propeller
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spinning velocities compared to the case in which the system
moves laterally by tilting (with small rxy). This phenomenon
can be easily appreciated looking at the experiments done
in [8]. Therefore, for large rxy the dynamics to consider
is the motor/propeller one, which has of course different
characteristics than the attitude one.

For intermediate values of rxy , a mixture of attitude and
motor dynamics influences the optimal choice of the gains kp
and kv in a way that is hard to predict a priori.

E. Conclusions

From the discussion carried out in this section, it emerges
that there are two different types of control parameters in (6)–
(8). The first type, namely mR, JR, KR, Kω , kp,z and kv,z
can be tuned mostly independently and resorting to state-of-
the-art methods such as, e.g., physical parameter identification
using least squares or PD tuning. The second type, namely
rxy , kp, and kv , are tightly coupled, and their effects on the
system behavior are coupled and nonlinear and one cannot
use straightforward methods like PD tuning to tune these
parameters. In particular,
• different values for rxy may be chosen depending on the

motion task at hand, where there is no clear ’best value’
until the task is specified;

• for each value of rxy it is expected to obtain different
optimized values for kp and kv , due to the nonlinear
interplay explained before

Therefore, in the following, for the first time in the literature,
we focus our attention on the optimal tuning of kp and kv for
different values of rxy in real platforms modeled and con-
trolled as BLF. First, we describe the automatic method used
for the tuning (Sec. IV), and then we test the presented method
on a real platform. These tests demonstrate the existence of
the expected dependency as well as the improvement of the
controller performance following the presented tuning method
(Sec. V).

IV. DATA-BASED PARAMETER TUNING ALGORITHM

The optimization algorithm that is used to tune the gains
kp and kv , for a given value of the parameter rxy , is an
instantiation of the model-free OPTIM-tune algorithm pre-
sented in [10] and requires only a measurable metric of the
performance of the controller in order to work. Further analysis
on the convergence of the OPTIM-tune algorithm can be found
in [10]. The overall method is a combination of two nested
loops: i) An outer loop, described in Algorithm 1, and ii) an
inner loop, also called single parameter tuning, described in
Algorithm 2.

Algorithm 1 (the outer loop) receives as input: i) the
maximum lateral force rxy (which is kept constant during the
tuning), ii) the two sets D

(1)
kp

, D
(1)
kv

that represent the intervals
over which the gains kp and kv are optimized, and iii) two
integers, Nb and N , representing the number of iterations in
the outer and inner loop, respectively.

Algorithm 2 (inner loop, or single parameter tuning) re-
ceives as input: i) rxy and N (the same of Algorithm 1), ii) the
starting set, denoted with D (0), in which one of the two gains

Algorithm 1: Tuning of controller gains kp and kv for a
fixed rxy value.

Data: rxy , D(1)
kp

, D(1)
kv

, N and Nb
Result: optimized k?p ∈ D(1)

kp
, k?v ∈ D(1)

kv

i← 1;
while i ≤ Nb do

kv ← D
(i)
kv ;

D(i+1)
kp

← algorithm2(D
(1) = D(i)

kp
, ξ = kv, rxy, N);

kp ← D
(i+1)
kp ;

D(i+1)
kv

← algorithm2(D
(1) = D(i)

kv
, ξ = kp, rxy, N);

i← i+ 1
end
k?p = D

(Nb)
kp ;

k?v = D
(Nb)
kv ;

Algorithm 2: Generic single parameter tuning.

Data: D(1) = [−θ(1),+θ(1)], ξ, rxy , and N
Result: D(N) = [−θ(N),+θ(N)]
i← 1;
while i ≤ N do

calculate contraction factor ρi;
calculate candidate (i+ 1) bounds:

−θ̂(i+1) =− θ(i) + ρi(
+θ(i) − −θ(i))

+θ̂(i+1) =− θ(i) + (1− ρi)(+θ(i) − −θ(i))

execute flight test with params ξ, −θ̂(i+1), and rxy;
−f ← f(se);
execute flight test with params ξ, +θ̂(i+1), and rxy;
+f ← f(se);
if −f < +f then

D(i+1) ← [−θ̂(i+1),+θ(i)];
else

D(i+1) ← [−θ(i),+θ̂(i+1)];
end
i← i+ 1;

end

(either kp or kv) will be optimized, and iii) the value of the
other parameter (either kv or kp) that is kept fixed during
the execution of Algorithm 2, denoted with ξ. The algorithm
provides as output a new set D (N), which is a contraction of
D (0) and is guaranteed to contain the optimum value of the
corresponding parameter.

Algorithm 1 executes Nb times a basic iteration in which
two instances of Algorithm 2 are performed sequentially to
contract D

(i)
kp

and D
(i)
kv

. In the first instance, kv is kept fixed to
its current estimate and the set to which the optimal kp belongs
is contracted, thus generating a new improved estimate of kp.
In the second instance – symmetrically – the new estimate of
kp is kept fixed while the set to which the optimal kv belongs
is contracted, thus generating a new improved estimate of kv .
At the end of Algorithm 1 the optimized values of the gains
are returned in the form of the mid-values of the intervals
generated by the contractions of the last (Nb-th) iteration, i.e.,
D

(Nb)
kp

and D
(Nb)
kv

. Such mid-values are denoted with D
(Nb)

kp

and D
(Nb)

kv , respectively.
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Algorithm 2 performs the set contraction implementing N
smaller consecutive contraction steps. Each step executes two
flight tests with the vehicle, using rxy as lateral force bound
and ξ as the temporarily fixed gain. The goal of each flight test
is to evaluate the effect of a new candidate for the upper and
lower bound of the set containing the gain to be optimized. A
new upper bound candidate +θ̂(i+1) is tested in the first flight
test, while a new lower bound candidate −θ̂(i+1) is tested in
the second one. Each flight test is followed by the evaluation
of a cost function f that depends on the state error se, i.e.,
the vector describing the error between desired and measured
state of the system during the execution of a flight test. The
candidate bound that corresponds to the test which returned
the lower value of f is used as new upper or lower bound for
the set of the estimated parameter, thus producing the sought
contraction for the particular step. This process is repeated N
times. The last obtained set D (N) is returned as the result of
the algorithm.

In our specific case, the goal is to find the optimal controller
gains that ameliorate the lateral trajectory tracking while the
platform remains as much as possible horizontal – thus ex-
ploiting at best the lateral force capability of BLF platforms. In
line with such goal, and assuming that the position trajectory
of a flight test is composed by Nc reference points, the
corresponding cost function f is defined as follows,:

f(se) =

Nc∑
k=1

|ek|︸ ︷︷ ︸
fe

+
1

Q

Nc∑
k=1

|φk|︸ ︷︷ ︸
fφ

=

Nc∑
k=1

J , (11)

where |ek| is the norm of the lateral position error, |φk| is the
norm of the tilt angular error and J is the weighted error per
reference point. The parameter Q is used to weight the contri-
bution of the angular error in the overall performance index,
giving more or less importance to the fact that the platform
remains horizontal while following the position trajectory.

V. TEST OF TUNING ON A REAL PLATFORM AND
VALIDATION OF THE INTERDEPENDENCY HYPOTHESIS

We validate the proposed approach with the BLF platform
presented in [8]; the platform is referred to as the Tilt-Hex and
is shown in Fig. 1. The platform is a hexarotor constructed
from six 12” tilted propellers equally-spaced about the plat-
form center of mass. The platform has a mass of 1.8 kg, and
an inertia tensor JR = diag {11.5, 11.4, 19.4} · 10−6 kg ·m2.

In addition, the platform is endowed with an Inertial
Measurement Unit (IMU) providing acceleration and angular
velocity measurements at 1 kHz, and is tracked with a motion
capture system at 100Hz. Both measurements are fused with
an Unscented Kalman Filter running at 1 kHz, providing an
estimate of the platform state. The motion controller runs on-
board at 1 kHz, and brushless motor controllers (BLDC ESC)
regulate the propellers’ speed using an in-house developed
closed-loop speed controller [16]. Most of the software is de-
veloped in C++ and runs on an on-board PC, on the exception
of the gain tuning algorithm which runs in Matlab/Simulink on
a ground PC. Most of the onboard software are open source,
and can be found at https://git.openrobots.org/projects/telekyb3,

while the Optim-tune software will be made available at
https://github.com/AppliedControlTechniques/Optim-tune.

A simulation and an experimental campaign have been
carried out, in which the task has been to tune the controller
gains, for selected values of rxy and different Q ratios. The
interested reader is referred to the multimedia attachment of
this letter for the experiments’ videos. In all the experiments
and simulations, the lateral acceleration of the reference tra-
jectory has been pushed up to 1.5ms−2, jerk to 10ms−3,
lateral velocity to 2ms−1, to bring the platform to its lateral
motion limits. During each of the optimizations, the initial
domains of the controller gains have been chosen such that
D

(1)
kp

= [10, 30] and D
(1)
kv

= [5, 15], and each domain has
been contracted N = 12 times by the inner loop in each of
the Nb = 2 outer loop iterations.

Finally, to stress the lateral position tracking and horizon-
tality of the platform (zero tilt), the reference trajectory has
been chosen as a back and forth path parallel to xW .

A. Simulative Analysis of the Cost Function Landscape

To study the cost function landscape, we simulated the
above mentioned platform with the corresponding controller,
and computed the different components of the cost function
while varying the controller positional gains kp and kv over a
discretized grid of D

(1)
kp
,D

(1)
kv

.
Fig. 3 shows the contour plots of the two components of

f(se) at rxy = 2 and rxy = 8. The functions fe and fφ
are shown separately to understand the effect of each on the
performance of the presented tuning scheme. This figure shows
that as rxy is increased from 2 to 8, the lateral position error
component fe decreases slightly for almost all values in the
given range, and the number of local minima slightly increases
and the position changes moderately. On the other hand, fφ
shows a different behavior, where it can be seen that the
number of local minima increases substantially for rxy = 8.
In addition, as rxy is increased, the values of fφ decreases
substantially; this can be seen from the different scales of the
corresponding contour plots. As such, as rxy is increased the
effect of the angular component on the overall cost function
decreases; this is similar to an increase in the Q value. This
shows the decreased effect of fφ (and correspondingly the
angular dynamics) on the tuning of the position controller
gains as rxy increases, even when Q is kept constant.

B. Experimental Test of the Tuning Algorithm

We conduct an experimental campaign to demonstrate the
tuning of the proposed algorithm and to show the relation
between the chosen rxy and the optimized controller gains.

Fig. 4 shows the average of the optimized controller gains
and standard deviation of each for different values of rxy and
Q, where the optimization at each rxy and Q value have been
repeated thrice. This figure shows that as rxy increases, the
optimized kp increases and the optimized kv decreases for
both Q values. In the case of Q = 300, the contribution
of fφ is reduced substantially leading to higher optimized kp
and kv values as the optimization allows for more aggressive
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Fig. 3. Contour plots of fe(kp, kv) and fφ(kp, kv) for two different values of rxy computed via simulation on a discretization of the ranges D
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(b) Q = 300

Fig. 4. Optimized gains (kp, kv) of the position controller versus rxy for
two values of the weighting ratio Q. For each optimized gain, we show the
average value and the standard deviation bar computed from three repetitions
of each experiment.

position tracking without taking the angular tracking error into
consideration.

In order to get an improved understanding of how the
algorithm operates, we show the evolution of the optimization
for two of the above optimization cases, corresponding to
rxy ∈ {2, 8} at a constant Q = 50. Fig. 5 shows the
corresponding evolution for rxy = 2 and rxy = 8. This figure
shows the evolution of the controller gains and the resulting
performance index for each of the two rxy values. These

experiments show clearly the improved trajectory tracking of
the controller with the optimized gains, and that while the
initial controller gains are the same for both experiments,
the optimized gains vary substantially for different values of
rxy , supporting the interdependence of such parameters that
is claimed in this work.

VI. CONCLUSIONS
In this letter, we studied the interplay between the parame-

ters and gains of the BLF platform while controlled via a full-
pose controller. We showed that the optimally chosen position
control gains rely largely on the estimated lateral force limit.

While one can fix the estimated lateral force limit at one of
its extreme values, we discussed the effect of these extremes,
where if the limit is chosen small enough the platform behaves
as an underactuated one, while if chosen large enough it might
exceed the physical capabilities of the platform, and thus the
controller could behave sub-optimally.

We then presented a detailed method for the auto-tuning
of the position control gains for different estimated lateral
force limits, and showed how these optimized gains vary
accordingly. However, the choice of this parameter is still an
open question, where for each application, different values of
the lateral force limit should be chosen. Moreover, based on
the applied lift force, this parameter has to be changed with
the corresponding optimized gains. As such, in the future, we
propose to apply a gain scheduling approach to choose online
the ‘best’ value of rxy and the corresponding optimized gains.
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