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A Novel Robust Hexarotor Capable of Static
Hovering in Presence of Propeller Failure

Elgiz Baskaya1?, Mahmoud Hamandi2?, Murat Bronz1, Antonio Franchi3,2

Abstract—This paper presents a novel open source design of
the Y-shaped hexarotor Unammend Aerial Vehicle (UAV), and
proves both in theory and real experiments its robustness to the
failure of any of its propellers. An intuitive geometrical interpre-
tation of UAV static hovering ability is presented, through which
the robustness of different coplanar/collinear hexarotor designs is
analyzed. Following the presented geometrical interpretation, we
also show a method to render the Star-shaped hexarotor robust to
the failure of some of its propellers, while showing its incapability
to static hover in the case of the failure of any of its propellers.
Finally, the efficiency of the Y-shaped and Star-shaped hexarotors
are tested experimentally, and conclusions on the advantages and
disadvantages of the two designs are drawn.

Index Terms—Aerial Systems: Mechanics and Control, Aerial
Systems: Applications, Failure Detection and Recovery

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAV)s are now widely
used in research and industry thanks to their versatil-

ity and large field of applications, including aerial physical
interaction [1]–[4]. The most commonly used UAVs are multi-
rotor collinear and coplanar platforms, such as quadrotors,
hexarotors and octorotors [5]; this is mostly due to their flight
efficiency as compared to more complex UAVs, in addition to
easiness and low cost of their production.

It is of paramount importance, for safety and reliability,
that the multi-rotor is designed to withstand at least a single
propeller failure, and precisely land after the fault. It has
been shown that it is possible to still fly multi-rotors with
less than six propellers (e.g., quadrotors) after the loss of one
or more propellers [6]. In such cases, however, the platform
is not anymore able to statically hover, i.e., to keep a zero
translational and angular velocity. In fact, the platforms start
to loiter and spin at an uncontrolled speed, while only their
average location can be controlled in practice. This is an
acceptable compromise if the multirotor flies in an open space
and if the exteroceptive perception system can still work in
such highly dynamic conditions. However, in general, e.g.,
when flying close to the environment and to humans, dynamic
hovering is not an acceptable fallback solution.
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Recently [7] have introduced a stronger notion of robustness
to propeller failure, as the capability to statically hover (i.e.,
hovering with near zero translational and angular velocity)
after the loss of any of the multi-rotor propellers. In order to
meet an acceptable safety standard, this property is a required
one for any platform flying in a critical environment. It has
been shown that, in order to achieve static hovering robustness,
six propellers are minimally required [7]. Furthermore, sur-
prisingly, it has been shown that the standard and widespread
Star-shaped hexarotors (see Fig. 1-right) are not robust in
such sense. This counterintuitive phenomenon can be seen for
example in [8], [9] where simulations and experiments show
that the best a model predictive controller is able to achieve
in such case is dynamic hovering, even if five propellers
are still available.1 Similar outcomes are obtained from other
commercially available platforms2.

The mathematical reasons for such vulnerability have been
deeply analyzed in [7], where it is explained that in order
to achieve robust hexarotor platforms one possibility is to
use a Star-shaped platform with tilted propellers [10], [11].
Exploiting this fact, two new prototypes have been built. One
prototype in [12] is a Star-shaped hexarotor platform where
one of the propellers can be quickly titled via a servomotor
in case of the loss of any of its propellers in order to recover
static hoverability. Another prototype, built and experimentally
demonstrated in [7], is a Star-shaped platform with constantly
tilted propellers. The robustness of both prototypes have been
shown in real experiments.

Another way to obtain robustness, also illustrated theoreti-
cally in [7] is to use a non-Star-shaped hexarotor, like, e.g., the
Y-shaped hexarotor [7] depicted in Fig. 1-left. Such solution
is mechanically simpler than the above mentioned designs,
where it does not need neither the tilting of the propellers nor
the addition of servomotors or other mechanisms. At the best
of our knowledge, the robustness of the Y-shaped hexarotor
design against propeller failure has never been experimentally
tested in the static hovering sense.

The goal of the work presented in this paper is to fill such
experimental gap and at the same time to provide an extensive
corollary of contributions in this field. In particular the main
contributions are summarized as follows:

1) provide a novel open source design and building of the
Y-shaped hexarotor theoretical concept which has been
only abstractly introduced in [7];

1https://youtu.be/cocvUrPfyfo
2https://youtu.be/HQ7wa5cBT w?t=45
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2) demonstrate for the first time in the literature via real
experiments that the Y-shaped hexarotor is a robust
platform in the static hovering sense, and therefore it
could be used in safety critical environments (e.g., close
to buildings and humans);

3) provide an intuitive way to understand why the collinear
Y-shaped hexarotor design is robust while the collinear
Star-shaped hexarotor design is not based on geometrical
intuition; to provide also an intuition about the influence
of parametric uncertainties on the robustness of the pre-
sented platforms;

4) carry out a systematic and extensive set of real ex-
periments that compare the Y-shaped and Star-shape
hexarotor designs (also built in house) in the fairest way
possible, both from the point of view of robustness and
energy efficiency.

The rest of this paper is organized as follows: sec. II models
a generic hexarotor and defines formally the Star-shaped and
Y-shaped hexarotors. Sec. III defines the feasible moment set
of the hexarotor platform, and studies the platform’s hovering
and propeller robustness. Sec. IV describes the built hardware,
and sec. V describes the ensuing experimental campaign.
Finally, sec. VI concludes the paper.

II. MODELING

We consider Multi-Rotor Aerial Vehicles (MRAV) with
six fixed propellers having collinear orientations. The world
frame is denoted with FW , its origin with OW and its
axes with {xW ,yW , zW } (see Fig. 1). The moving frame is
denoted with FR, its origin OR coincides with the Center of
Mass (CoM) of the platform, and its axes are denoted with
{xR,yR, zR}. We denote with pR ∈ R3 and RR ∈ SO(3)
the position of OR in FW and the rotation matrix describing
the orientation of FR with respect to (w.r.t.) FW , respectively;
we further denote by vR = ṗR ∈ R3 the linear velocity of
OR in FW , and by ωR the angular velocity of FR w.r.t. FW ,
expressed in FR. It is noted that ṘR = RR[ωR]×, where
[·]× denotes the map from a vector in R3 to its corresponding
skew-symmetric matrix in SO(3).

The platform is actuated with a set of n fixed propellers.
The frame Fpi is attached to the stator of the motor spinning
the propeller and its origin Opi coincides with the center of the
propeller. The axes of Fpi are denoted with {xpI .ypi , zpI},
and pi ∈ R3 denotes the position of Opi in FR. The i-th
propeller rotates with a spinning rate ωi ∈ R about the zpi
axis, creating a thrust force fi ∈ R3 applied at Opi and a drag
moment τ di ∈ R3, defined as follows:

fi = cfi‖ωi‖ωizpi , (1)

τ di = cτi‖ωi‖ωizpi , (2)

where cfi ∈ R>0 and cτi ∈ R are the corresponding lift and
drag coefficients of the corresponding propeller. The control
input of the i-th propeller is the quantity ui = ‖ωi‖ωi.
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Fig. 1: System model and defined frames for Y-shaped (left)
and Star-shaped (right) hexarotors.

The total resulting force fR applied at OR and moment τR
with center OR are expressed in FR as follows:

fR =
n∑
i=1

cfiuizpi , (3)

τR =

n∑
i=1

(τ ti + τ
d
i ) =

n∑
i=1

(cfipi × zpi + cτizpi)ui. (4)

We assume all propellers to be identical, with three pro-
pellers rotating in one direction and the remaining three in
the opposite direction; as such, cfi = cf and cτi = κicτ ,
where cτ ∈ R>0 and κi = −1(+1) denoting respectively a
CCW(CW) direction of rotation w.r.t. zpi . The position of Opi
in FR in is given by

pi = Rz

(
π
6 + (i− 1) 2πn −

1
2 (−1)

iγ
)︸ ︷︷ ︸

Rγ(i)

[
l
0
0

]
, (5)

with i = 1, . . . , 6, where Rz is the canonical rotation matrix
about the z-axis. The selection of two different values for the
parameter γ allows modeling both designs considered in this
work, and presented in Fig. 1, as follows:

1) Star-shape hexarotor (Fig. 1, right): is a hexarotor
platform with γ = 0. In this configuration, the propellers are
the furthest away form each other, and thus do not overlap.

2) Y-shape hexarotor (Fig. 1, left): is a hexarotor platform
with γ = π

3 . In this configuration, each pair of propellers share
a single rotation axis and are placed on top of each other. In
order to make such design physically realizable, the pairs of
coinciding propellers have to be displaced along their rotation
axis. Such displacement does not affect the computation of the
total force and moment because it is done along the direction
of the thrust forces.

For any intermediate value of γ ∈ (0, π3 ) one obtains a
platform that is ‘in between’ the two mentioned above.

III. FEASIBLE MOMENT SET

Using (3) and plugging (5) in (4) we can write fR = F1u
and τR = F2u, where u = [u1 · · · u6]> ∈ Rn and the force
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allocation matrix F1 and moment allocation matrix F2 are
defined as

F1 = cf

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

 (6)

F2(γ) =

cτ

 rs(π
6
− γ

2
) +rs(π

2
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2
) +rs( 5π

6
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2
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2
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2
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2
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6
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2
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2
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2
) +rs( 11π

6
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2
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−rc( 7π
6

− γ
2
) −rc( 3π

2
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2
) −rc( 11π

6
− γ

2
)

1 −1 1


(7)

where r = (cf/cτ)l, s(·) = sin(·), and c(·) = cos(·).
Specializing (7) for the Y-shaped (γ = π

3 ) and Star-shaped
(γ = 0) hexarotors one obtains:

F Y2 = F2(
π
3 ) = cτ

 0 +r
√
3
2 +r

√
3
2 −r

√
3
2 −r

√
3
2 0

−r +r 12 +r 12 +r 12 +r 12 −r
−1 1 −1 1 −1 1


(8)

F S2 = F2(0) = cτ

 +r 12 +r +r 12 −r 12 −r −r
1
2

−r
√
3
2 0 +r

√
3
2 +r

√
3
2 0 −r

√
3
2

−1 1 −1 1 −1 1

 .
(9)

We assume that each entry of the input u is limited between
0 and a maximum value umax, i.e., u ∈ U =×n

i=1
[0, umax],

where U is the set of feasible inputs. Consequently we define
the set F2 as the feasible moment set, i.e., the image set of U
through the linear map F2:

F2(γ) = {τ ∈ R3 | ∃u ∈ U : τ = F2(γ)u}. (10)

The specialized feasible moment sets for the Y-shaped and
Star-shaped hexarotors are noted as FY2 = F2(

π
3 ) and FS2 =

F2(0), respectively.
The plots in the first column of Figure 2 show the feasible

moment set of the Y-shaped and Star-shaped hexarotors.

A. Static Hovering

The platform is able of static hovering when it can reach
and maintain a constant orientation and position, i.e.

ṗR → 0, ωR → 0, (11)

As was explained in [7] the following conditions are needed
for a platform to posses the static hovering ability

rank{F2} = 3 (12)

∃u ∈ int(U) s.t.
{
‖F1u‖ > 0
F2u = 0

. (13)

Where int(U) denotes the interior of U.
Conditions (12) and (13) can be understood geometrically

from the feasible moment set F2 as follows:

Proposition 1. The second condition of (13) is equivalent to
check that 0 ∈ int(F2)

Proof. It is a straightforward consequence of the continuity of
the map F2. Full proof omitted for the sake of brevity.

Following Prop. 1, a platform is deemed unable of static
hovering if the origin is a boundary of F2 or an external
point of the set. It is easy to show that both the Y-shaped
and Star-shaped hexarotors can achieve static hoverability as
shown below.

Proof. rank{F Y2 } = 3 and rank{F S2 } = 3, and any input
of the form u = λ1 = λ[1 · · · 1]> ∈ Rn with λ ∈ (0, umax)
belongs to int(U) and satisfies (13).

The static hovering ability of both platforms can also be
seen from the feasible moment set of each (Figure 2), where
the origin is indeed an interior point of both FS2 and FY2 .

B. Rotor Failure

In this section we highlight the effect of propeller loss
on the static hovering capability of the two hexarotors in
exam. We denote by kF2(γ) the moment allocation ma-
trix F2(γ) in which the k-th column has been zeroed (or,
equivalently, removed). Such matrix represents the moment
allocation matrix of a platform in which the k-th propeller
does not spin anymore after a fault, i.e., uk = 0. We denote
by kF2(γ) the feasible moment set associated to kF2(γ).
The same specializations for the Y-shaped and Star-shaped
platform apply, thus obtaining kFY2 , kF Y2 , kFS2 , kF S2 .

Remark 1. The feasible moment set kFS2 for different k is
a rotation about the z-axis of k−1FS2 , with a flip about the
(x, y)-plane.

Proof. It is easy to see that

kF S2 =
[
1 0 0
0 1 0
0 0 −1

]
Rz(

π

3
)k−1F S2 (14)

Since all propellers are identical, then the transformations
between kFS2 and k−1FS2 are the same as between kF S2 and
k−1F S2 .

It was proved in [7] that the Y-shaped hexarotor – or
any collinear coplanar hexarotor with γ ∈ (0, 2π3 ) – is still
capable of static hovering after the single loss of anyone of its
propellers. On the other hand, [7] proved that the Star-shaped
hexarotor (γ = 0) loses its ability to perform static hovering
as it loses any of its propellers.

The static hovering ability of the two platforms can be easily
understood from the geometrical viewpoint presented earlier.
The vulnerability of the Star-shaped hexarotor can be seen
from the feasible moment set of the corresponding 1FS2 shown
in Figure 2, where it is clear that the null torque is a point on
the boundary of the shown feasible moment set; this result is
similar for any kFS2 thanks to remark 1. Figure 2 also shows
that for any kFY2 , the origin of the feasible moment set is an
interior point, where 0 ∈ int{

⋂
k
kFY2 }.
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Healthy Platform 3D moment set
with propellers 1 or 4 failed

cross section of moment set
along {xR, zR} plane

with propellers 1 or 4 failed
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Fig. 2: Visualization of the platform feasible moment sets.

C. Effect of Disturbance Moment

For any platform where static hovering is not feasible after
the loss of any of its propellers, it is possible to shift the origin
of the feasible moment set into the interior of kF2, as long
as (12) and the first part of (13) are still satisfied. This can
be done by adding a disturbance moment τdistR such that the
control moment τ cR = −τdistR ∈ int(kF2).

For the Star-shaped hexarotor, for example, a disturbance
moment can be obtained by shifting the CoM of the platform.

Proposition 2.

@τ cR ∈ int(kFS2 ) ∀k ∈ n (15)

i.e., it does not exist a single disturbance moment that allows
to shift the origin in the interior of the feasible moment set of
the Star-shaped hexarotor in the case of the loss of any of the
propellers.

Proof. This result is a consequence of the fact that⋂
k
kint(FS2 ) = ∅. Let us consider a moment τ1,4R ∈ 1FS2 ∩

4FS2 .

τ1,4R = cτ

+r +r 12 −r 12 −r −r
1
2

0 +r
√
3
2 +r

√
3
2 0 −r

√
3
2

1 −1 1 −1 1



u12
u13
u14
u15
u16

 (16)

= cτ

 +r 12 +r +r 12 −r −r
1
2

−r
√
3
2 0 +r

√
3
2 0 −r

√
3
2

−1 1 −1 −1 1



u41
u42
u43
u45
u46

 (17)

By simplifying then adding the first and second rows we find
u14 + u41 = −(u14 + u41) to be a necessary condition in the
intersection between the two sets. The only solution for the
above equality is to set u1 = u4 = 0; as such

@u > 0 s.t. τ1,4R ∈ int(1FS2 ∩ 4FS2 ) (18)

and as such, int(1FS2 ∩ 4FS2 ) = ∅, and int(
⋂
k
kFS2 ) = ∅.

The reasoning behind the above proof is also visible from
the figure 2, where it can be seen clearly that int(1FS2 ∩4FS2 ) =
∅.

D. Effect of Model Uncertainty

While the above modeling considers the nominal geometry
of the system, manufacturing uncertainty can slightly change
the actuation capabilities of the platform. More specifically, in
the nominal model we consider propellers to be mounted with
no tilt, i.e., α, β = 0. As detailed in [7], any modification in
the mounting tilt can induce a stabilization of the platform.
Moreover, while we consider lift and drag coefficients cf , cτ
to be constant, they are a linear fit of the underlying nonlinear
model. In addition, different propellers might have varying
aerodynamic properties. Finally, in the above formulation
the arm length l between the CoM and each propeller is
assumed constant, and the CoM is assumed to coincide with
the Geometric Center (GC).

In a static hovering condition, the uncertainties mentioned
above can be approximated by a lumped disturbance moment
τdistR ; this disturbance has to be compensated so as the
resultant moment applied to the platform is equal to zero. For
the compactness of the paper, we omit the formal derivation
of this lumped disturbance moment. This implies that the
input moment τR needed to have static hovering is equal to
τR = −τdistR and not zero as it would be in the nominal case.

The presence of such disturbance τdistR will practically
make possible the static hovering of Star-shaped hexarotor
during the loss of some of its propellers; in particular, for any
propeller loss whose feasible moment set still contains the
origin following the translation by τdistR . More formally, the
platform can hover upon the loss of any propeller k for which
the following condition is verified

− τdistR ∈ int(kFS2 ). (19)

However, and as suggested in Prop. 2, for any τdistR there
will always exist some propellers whose loss precludes static
hovering for the Star-shaped platform.
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Fig. 3: The Y-shaped (top) and Star-shaped (bottom) hexarotor
platforms built in-house for the fair comparison.

Remark 2. In the case of the Y-shaped hexarotor, let us assume
that there exists a threshold moment τ thresholdR such that

∀τdistR ≤ τ thresholdR − τdistR ∈ int(FY2 ). (20)

It is safe to assume that within the manufacturing and operat-
ing conditions of our platforms, τdistR ≤ τ thresholdR ; a similar
analogy can be applied to the Y-shaped hexarotor after the
failure of any of its propellers.

IV. EXPERIMENTAL PLATFORM

A. Hardware: Y-shaped and Star-shaped Hexarotors

To be able to systematically compare the Star-shaped and
Y-shaped hexarotors, we design two platforms with identical
components and similar properties, with the corresponding
specifications shown in Table I. The two platforms, shown
in Fig. 3, are built via 3D printing technology with Onyx
material, and similar off-the shelf components for the propul-
sion system, telemetry and safety link communication. Finally,
the two platforms are flown with the same autopilot and
flight controller, where the controller used is based on the
Incremental Non-linear Dynamic Inversion controller (INDI).
The design of both platforms is available to the public via the
following link (Design link).

B. Software: Paparazzi Autopilot and INDI Controller

Throughout the flight tests, we have used the Paparazzi
Autopilot system [13]. It is an open-sourced project started
back in 2003 and used by several research groups, academics,
and hobbyist. Being one of the first open-source autopilot

systems in the world, Paparazzi covers all three segments:
ground, airborne, and the communication link between them.
Paparazzi has also its own complete flight plan language,
where the user can define any possible trajectory using existing
commands, such as circle, line, hippodrome, figure-eight,
survey, etc. Thanks to its middle-ware communication bridge
called Ivy-Bus, external software can be directly connected
with the publish and subscribe method to the ground segment,
without the need to modify the code.

The autopilot implements the INDI controller based on [14];
the controller is a robust sensor-based (measurement-based)
controller which revolves around the control of the angular
accelerations in an incremental way. As illustrated in [14],
INDI is a robust and reliable controller, capable of dealing
with strong wind perturbations and modeling inaccuracies. We
refer the interested reader to the corresponding paper for more
details on the control law.

V. EXPERIMENTAL RESULTS
To test the robustness and efficiency of the built platforms,

an experimental campaign has been carried out at the VTO
flight arena3. The position and orientation of the vehicles are
captured by the motion capture system installed in the arena,
however, the update frequency of the motion capture system
has been reduced to 5 Hz to emulate the GPS position tracking
frequency encountered in an outdoor environment.

To asses the robustness of the platforms, we introduce the
following two metrics

1

2
m (e>p ep + v>RvR) (translation motion error) (21)

1

2
mω2

φ (rotational kinetic energy), (22)

where ep = pdR−pR ∈ R3 is the positional error and ωφ is the
yaw rate. It is easy to show from the underactuated dynamics
and differential flatness of both vehicles that such metrics
reflect the platform hovering, where each converges to zero
if the platform is in static hovering, and diverges otherwise.

A. Static Hovering Experimental Campaign

To test the robustness of each platform, we synthetically
induce a propeller failure while the platform is in static

3https://www.enac.fr/en/drone-flight-arena-toulouse-occitanie-0

TABLE I: Hexarotor Specifications

Specification Star-Shape Y-Shape Units
Frame-Motor Distance 0.143 0.130 [m]
Total Mass 0.745 [kg]
Battery Capacity 23.0 [Wh]
Flight time 569 344 [s]
Maximum thrust 60 45 [N]
Structure material 3D printed (Onyx composite)
Structure components 9 pieces 7 pieces
Motor & Propeller T-Motor F40(Kv 2400) & 5T-5147 Prop
Electronic Speed Ctrl T-Motor F45A V2.0
Autopilot Paparazzi Tawaki v1.1
Communication Xbee modem & Futaba SBus Receiver
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(a) Y-shaped hexarotor flights

(b) Star-shaped hexarotor flight with the controller not informed of the fault

(c) Star-shaped hexarotor flight with the controller informed of the fault

Fig. 4: Each of the subfigures shows (top) the North-East projection of the flight trajectory onto the (xW , yW ) plane, and
(bottom) the translation motion error and the rotation kinetic energy of the platform during the corresponding flight.

hovering, and assess the platform’s robustness in the wake
of the failure.

We note that during these experiments, and unless otherwise
specified, the controller was not informed about the propeller
failure, and rather attempts to fly the platform solemnly based
on its measurements.

1) Static Hovering of the Y-shaped Design: First, we test
the Y-shaped hexarotor to verify its robustness to propeller
failures as theoretically proven in Sec. III.

Fig. 4a shows (top) the position of the Y-shaped hexarotor
and (bottom) the hovering metrics of the Y-shaped hexarotor
while flying with all propellers working properly and in the
wake of the failure of one of each of its six propellers. As
expected, the platform recovers its position after the failure of

any of its propellers, with the two metrics converging to zero
a few seconds after the failure.

2) Static Hovering of the Star-shaped Design: A similar
experiment was conducted to test the static hovering ability of
the Star-shaped hexarotor.

Fig. 4b shows (top) the position of the Star-shaped hexarotor
and (bottom) the hovering metrics of the Star-shaped hexarotor
while flying with all propellers working properly and in the
wake of the failure of one of each of its six propellers. It can
be seen from Fig. 4b that while the healthy platform can hover
normally, the Star-shaped hexarotor crashes after the failure of
propellers 4-6. On the other hand, after the loss of propellers
1-3 the platform does not crash, however, it oscillates about
the desired position, which can be observed in the large value
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Fig. 5: Circular path following of Y-shaped hexarotor in healthy and failed rotor conditions. (Top) shows the North-East
projection of the flight trajectory onto the (xW , yW ) plane, (bottom) shows the norm of the positional error.

of the translation motion error.
While the vulnerability of the Star-shaped hexarotor is

expected (Sec. III), we repeated the above experiment for the
Star-shaped hexarotor while informing the controller of the
propeller fault. This is done by providing an updated allocation
matrix to the controller, where the column corresponding to
the failed propeller has been removed.

Fig. 4c shows the results of this experiment, where we can
see that the Star-shaped hexarotor crashes after the failure of
propellers 1 and 3-6, while it hovers normally following the
failure of propeller 2.

Finally, we test the effect of adding a disturbance moment
to the Star-shaped hexarotor on the platform’s static hovering
ability. The disturbance moment is induced by shifting the
location of one of the platform’s components in order to shift
its CoM. Table II shows the static hovering ability of the
Star-shaped hexarotor following the failure of one of each of
its propellers while the CoM is placed in the center of the
platform, or shifted along xR or yR. It can be seen that for
each of the applied disturbance moments, and as suggested in
Sec. III, the platform is vulnerable to the loss of some of its
propellers, while it can successfully hover following the loss
of others.

B. Path following after propeller failure
To further assess the level of robustness of the Y-shaped

hexarotor after propeller failure, the platform was requested
to follow a circular path after the recovery from the failure
of each of its six propellers. this is essential to show that the
Y-shaped hexarotor is not only able to remain still but also to
follow a trajectory after a failure. Figure 5 shows the results
of these experiments, where it can be seen that the tracking
error after propeller failure is bounded and comparable to the
corresponding error of the healthy platform.

We omit the plots of the Star-shaped hexarotor circular path
tracking following propeller failure, where such a maneuver
was only possible in the case of the loss of the second propeller
with the controller being informed of the fault.

C. Energy consumption in healthy condition
To assess the efficiency of the two designs, we compare the

power consumption of each platform at hover. To do so, each

Fig. 6: Measured battery voltage during flight of Star-shaped
and Y-shaped hexarotor at hover. Total flight time was recorded
for each platform as the time for the voltage to drop from
12.6[V] (fully charged battery) to 9.8[V].

platform is flown with a fully charged battery (12.6[V]) until
the battery voltage reduces to 9.8[V], after which the platform
flight becomes unstable. Fig. 6 shows the voltage throughout
the test flights, where the flight of each platform was repeated
twice. It can be seen from this figure that the flight time of the
Y-shaped hexarotor is 60% of the corresponding Star-shaped
flight time. In addition, the initial voltage drop of the Y-shaped
hexarotor (i.e., the voltage drop required for take off) is higher
than the corresponding drop in the case of the Star-shaped
hexarotor, which suggests a higher drawn current at hover.

The reduction in efficiency is expected to be caused in part
to the interaction between the co-axial propellers and in part
to the increased interaction between the flow of the propellers
with the arms connecting the propellers to the platform, given
that the arms of the Y-shaped hexarotor are made wider
than those of the Star-shaped hexarotor to gain the required
structural robustness.

VI. CONCLUSIONS

In this work we introduced an open source design of a
Y-shaped and Star-shaped hexarotor. The two designs are
built with identical components and similar properties to
systematically compare the abilities of each. The two platforms
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reply on the INDI controller to fly robustly even after the
failure of any(some) of their propellers respectively.

In addition, we introduce an intuitive geometrical inter-
pretation of the platforms’ static hovering ability. Following
this geometric interpretation, we show the vulnerability of
the Star-shaped hexarotor to the single failure of some of its
propellers and the robustness of the Y-shaped hexarotor to the
single failure of any of its propellers.

The static hovering of the two designs is further studied
via an extensive experimental campaign that validates the
theoretical hypotheses. In addition, their respective efficiency
was tested comparing the power consumption of each.

Following the above analysis, we can clearly see that while
the Y-shaped hexarotor is robust to the failure of any propeller,
it is less efficient than the Star-shaped design. On the other
hand, the Star-shaped design is a more efficient design, while
it is vulnerable to the failure of some of its propellers.

The study of a platform that can benefit from the efficient
and robust of each of the two designs is an interesting research
line that is left as as future work.

REFERENCES

[1] F. Ruggiero, V. Lippiello, and A. Ollero, “Aerial manipulation: A
literature review,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 1957–1964, 2018.

[2] R. Rashad, J. Goerres, R. Aarts, J. Engelen, and S. Stramigioli, “Fully
actuated multirotor uavs: A literature review,” IEEE Robotics & Automa-
tion Magazine, 2020.

[3] G. Loianno and V. Kumar, “Cooperative transportation using small
quadrotors using monocular vision and inertial sensing,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 680–687, 2017.
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