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Abstract—Data management has become crucial. Distributed
applications and users manipulate large amounts of data. More
and more distributed data management solutions arise, e.g.
Casandra or Cosmos DB. Some of them propose multiple
consistency protocols. Thus, for each piece of data, the developer
or the user can choose a consistency protocol adapted to his
needs. In this paper we explain why taking the consistency
protocol into account is important while replication (especially
placing) pieces of data; and we propose CAnDoR, an approach
that dynamically adapts the replication according to the data
usage (read/write frequencies and locations) and the consistency
protocol used to manage the piece of data. Our simulations show
that using CAnDoR to place and move data copies can improve
the global average access latency by up to 40%.

I. INTRODUCTION

With the development of networks and the advent of clouds,
data is now shared at geo-scale. Large-scale distributed appli-
cations such as social networks, search engines, online stores
share a large amount of data. Any user can now use a cloud
account to store and share data. Among all these pieces of
data, there exist many different manner to use them : several
pieces of data are written once and then just read while others
are updated frequently; several are accessed by a single user
while others are shared among many users.

Depending on the usage and the needs, two different pieces
of data do not necessarily need the same consistency protocol.
Some of them may require a strong consistency protocol,
implying a costly synchronization for each write operation
(or for each read operation if the data is frequently updated
but rarely read), while others may prefer a more relaxed
consistency protocol to reduce access latency and increase the
global application performance.

Recent data storage systems such as Casandra [1]and Azure
Cosmos DB [2] allows the user to choose, on a per-data basis,
the consistency level/protocol that suits the best. There are
already many research works concerning the placement of
data copies taking into account fault-tolerance concerns or
performance concerns [3]–[7]. However, these works do not
take into account the consistency protocol used to manage the
consistency among the data copies.

We claim that the consistency protocol has to be taken into
account while placing (and then moving, while the access
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patterns evolve) data copies. Of course, the usage pattern
remains a key criteria. On the one hand, a read-only data can
be replicated at many locations, close to where the data is
accessed, to enhance access performance. On the other hand,
the number of copies of a frequently updated data should
remain small and the copies should remain close to each other
to reduce the synchronization cost. However, depending on
the consistency protocol and the amount of synchronization
among replica it implies (for the write or read operations) the
data copies should be placed close to each other (in order to
lower the synchronizations latency) or close to the users (in
order to lower the accesses latency). Indeed, both the access
patterns and the consistency protocol have to be taken into
consideration.

The contributions of this paper are the following.
• We describe the interest to take the consistency protocol

into consideration while placing data copies.
• We propose CAnDoR, an approach that tracks data ac-

cesses and regularly computes, for each data, a replica-
set (set of nodes hosting a data copy) taking into account
both usage patterns and the consistency protocol used.

• We have written a simulation tool, based on PeerSim [8]
providing the ability to simulate a large-scale distributed
storage platform and to compute, using CAnDoR, an
adapted set of replicas for each piece of data, according
to the access patterns and the consistency protocols.

The rest of this paper is structured as follows. Section II
presents research works related to data storage systems and
data placement strategies. Section III introduces our sys-
tem model on which our approach, CAnDoR, is built, then
Section IV describes how CAnDoR adapts the replication
according to both access patterns and consistency protocols.
Section V presents and discusses our simulation results before
Section VI concludes the paper and proposes some future
works.

II. RELATED WORKS

While designing a large-scale distributed data storage sys-
tem, data placement is a key problem. This is even more
critical for geo-distributed data storage systems. Therefore,
there are many research works tackling this issue.

The goals of data placement can be organized into three
families: (i) data localization, (ii) data durability (fault toler-



ance), and (iii) data access performance (high availability, data
freshness).

The data placement for the localization problem has been
deeply studied in the context of distributed hash tables (DHT),
such as Dhash [9] upon which Chord [10] is built and Past [11]
upon which Pastry [12] is built. However, in these systems,
data is usually read-only and the replication does not take into
account neither consistency, nor user access performance. The
main goal here is to offer a scalable way to localize a piece
of data and its copies.

Many works have addressed the durability issue. Among
them, we can cite Pace et al. [5] which take into account
nodes availability while placing data copies or Sun et al. [13]
which scatters pieces of data in order to increase the number of
potential data sources while healing the system after a failure.

Concerning the performance issue, here again there are
many research works. Usually, these works try to place data
copies close to the users like Ranganathan and Foster [4]. This
is also the case for most content delivery networks (CDN)
like Akamai [14]. The works do not take multiple consistency
protocols into consideration. In the case of CDNs, the data is
read-only.

Some systems propose to adapt the replication during the
time [6], [7] (it is also the case for the CDNs). However,
even if these systems react, like CAnDoR, to the evolving
access patterns, they do not take consistency into account.
Scatter [3] takes consistency into account, but its goal is
to make linearizability scalable. It does not support multiple
consistency protocols.

However, many consistency models and protocols are used
by applications. An application may even want to use different
consistency models for different pieces of data. A formal
description of many models has been proposed by Viotti and
Vukolic in [15]. A recent work introduces a new concept
and consistency model, such as the “Just-Right” consistency,
introduced by Shapiro et al. in [16]. This model provides a
low latency response while providing consistency guarantees
through the use of an invariant.

Due to the different application needs, several consistency
protocols may be implemented in a single distributed storage
system. This is already available in commercial systems such
as in Casandra [1] and Azure Cosmos DB [2].

For example, Cosmos DB implements 5 different trade-offs
between consistency and availability. Each data of the system
may have a different consistency level.

Cassandra proposes a different approach of consistency. The
number of nodes that must receive an update or the number of
nodes that must respond to a request may be adapted to obtain
different guarantees over read or write operations. Here again,
each data can have its own value for those factors.

In such systems, placing the data without considering the
consistency model is inappropriate as each consistency model
requires different strategies. However, to our knowledge, no
research work focus on placing and moving data copies
taking into account both the consistency criterion and the user
behavior. CAnDoR aims at filling this gap.

III. SYSTEM MODEL AND ASSUMPTIONS

This section presents the three models we rely on to build
CAnDoR. We start by describing the data model then we
develop the system model, finally, we present a discussion
about the knowledge model. Notice that we do not discuss
failures: data-storage node failures have to be tackled by the
distributed storage system itself. CAnDoR’s algorithms aim at
driving the data copies placement on the remaining nodes. The
computation itself is fault tolerant: it takes into account only
alive (according to the system) nodes.

There is no failure model here because CAnDoR’s algo-
rithms should run on top of a distributed storage system and
will rely on the failure tolerance provided by this system. If
a storage node that has computed some steps in CAnDoR be-
comes faulty, it will be considered as faulty for the distributed
storage system and will be handled directly. This way, the
steps already performed are no longer relevant and should not
be recovered.

A. Distributed Storage System model

CAnDoR has been designed to place data copies in a
distributed storage system. We define such a system by a
set of users U = u1, ..., un accessing a set of pieces of data
D = d1, ..., dk stored by storage nodes S = s1, ..., sm. Each
piece of data is replicated according to a given replication
factor, denoted RF , and each piece of data is managed using
a particular consistency protocol.

A user may either create, update, read or remove a piece of
data. We consider that the users are well formed, i.e. they only
perform correct actions. A storage node may either (i) serve
the request received from a user, (ii) share some information
with other nodes, (iii) move some data or (iv) run a CAnDoR
computation. We also consider that storage nodes are well
formed, i.e. they serve each request once and only once, do
not send any message to users apart from responses from
requests and communicate with other storage nodes only to
share information or to start a data movement.

B. Data model

CAnDoR must be able to run on top of any distributed
storage system and therefore does not rely on a given data type.
However CAnDoR needs some meta-information concerning
the stored data: (1) a unique identifier (id), to be able to
differentiate data from others, (2) the replication factor (RF )
and (3) the consistency protocol used to manage this data.
The consistency protocol is used to determine a couple of
coefficients indicating the importance of synchronization (c for
Consistency) and response time (a for Availability).We discuss
deeper this point in Section IV-B.

Each copy of a piece of data is called a replica. If it is not
ambiguous, the term replica also refers to the storage node
that holds a replica.

C. System model

As described above, two sets of nodes are considered:
storage nodes (S) and users (U ). Each node (storage node or
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user) can contact any other node in the system. These sets and
the communication properties among nodes are represented by
a graph G = (V,E) with V = U∪S the set of vertices formed
by the union of the set of users and the set of storage nodes
and E the set of edges such that e(u, v), (u, v) ∈ V if u and
v may communicate together.

We consider that there is no permanent partition in the
graph, i.e. there is a path from any node to any other node.
The latency of a given communication link may fluctuate over
time, E is thus enriched by the latency of the communication
link depending on time. To this end we use the function λ(e, t)
that returns the latency of e at time t. As the latency from a
node to another may change or as a partition may temporally
occurs, we consider the notion of journey J rather than the
notion of path. Roughly speaking, a journey Ju,v may be seen
as a path from u to v through time. This notion is described
in detail in [17]. We denoted by λ(J) the median duration of
the journey J .

The system may be organized in clusters (nodes are parti-
tioned into groups linked by a high speed network) or not.

D. Knowledge model

Storage nodes have an approximate knowledge of the whole
system. In case of systems consisting of a federation of
clusters, storage nodes may have an accurate knowledge of
their own cluster.

A storage node also keeps track on some data-related
metrics. For each piece of data it stores, a storage node keeps
track of the source and the number of operations send by users,
the list of other storage nodes holding a copy of the piece of
data, . . . Storage nodes of the same piece of data periodically
exchange their views of the users behavior.

IV. CANDOR’S APPROACH

CAnDoR is a “per data” approach. A storage node computes
the optimal placement for each data independently (each data
has its own consistency/performance trade-off and is accessed
with a particular pattern). CAnDoR establishes and maintains
several metrics to determine, for each data d, which set of
nodes should hold a replica.

As each computation considers a single piece of data d, we
note N the set of nodes that holds a replica of d instead of
Nd as it is not ambiguous (and the same is done for other
notations).

Roughly speaking, CAnDoR computes the “best” trade-
off between the propagation time1 and response time. These
notions are developed in Section IV-A. Section IV-B details
how CAnDoR provides the ability to set weights in order
to tune the consistency/availability trade-off. Section IV-C
explains how the approach adapts the data placement while
time evolves, and Section IV-D details the actual computation
of the set of nodes.

In order to compute the trade-off between propagation time
and response (to the user) time, we need to be able to estimate

1The propagation time is the time necessary to propagate updates to all
replicas, it is not necessarily blocking.

the time needed for a node u to communicate with another
node v. We consider Ju,v the set of potential journeys from
u to v. The expected time needed for a message sent by u
to reach v is noted EJ (u, v). We assume that this value is
provided by the system and may slightly vary over time.

A. Synchronization and response times
When data is replicated in a distributed system, two kinds of

guarantees must be provided: the consistency among replicas
and a short latency for accessing the data. The CAP theorem
( [18]) states that one cannot achieve both strong consistency
and high availability (we assume that partition tolerance cannot
be avoided in a large-scale distributed storage system). There-
fore a distributed system must provide a trade-off between
consistency and availability.

However, the system should be as fast as possible, according
to the trade-off. Consistency is achieved through some form
of synchronization/propagation (blocking synchronization and
wait-free propagation are possible according to the consistency
guarantees), and availability is measured by the time needed
to answer a user request. We develop here how we evaluate
those two metrics.

Propagation time ts: The propagation time ts is the time
needed for a storage node si to send an update on the data
d to the other nodes that store a copy of d. We denote N
the set of nodes that holds a copy of d. In a fully distributed
system, ts is the time needed for si to send the update to
the “farthest” node in N . We note S(si,N ) this time and
we compute it by: S(si,N ) = max

sj∈N
[EJ (si, sj)]. However

several synchronization protocols require to send multiple
messages (using a consensus protocol like Fast Paxos [19] for
instance). We note np2 the number of needed message phases
and the formula becomes: S(si,N ) = np. max

sj∈N
[EJ (si, sj)].

If we consider that any node may receive a write operation to
propagate, then we must consider the synchronization time of
a set that holds a replica of the data d, denoted ts(N ). Such
a time is given by the longest synchronization time between
any two node of the set: ts(N ) = max

si∈N
[S(si,N )]. This

metric considers that every node is equally important when
considering the synchronization time. One could argue that is
not necessarily true. For example, a storage node may have
some property (more storage capability, more computation
power, etc.). Therefore, CAnDoR has the possibility to handle
storage node priorities. The priority given to a storage node
is noted ps. In this paper, however, we consider each storage
node as equally important, i.e. ∀si, sj ∈ S, psi = psj . We
finally obtain the following priority-aware formula to estimate
the synchronization time of a set:

ts(N ) = max
si∈N

[psiS(si,N )]

Roughly speaking, the synchronization time of a set of
nodes is the largest time for two nodes of the set to com-
municate with each other (enough time to be synchronized),
weighted by the importance of storage nodes.

2The synchronization protocol may vary from a data to another.
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Response time to a user tdr: If a user sends a request to
the system, it will wait for a response from any node, i.e., the
fastest one. The waiting time is thus given by the formula:
R(u,N ) = min

s∈N
[EJ (u, s)]. If multiple users from a set of

users perform read requests (during a given time window),
CAnDoR must consider the sum of the response times for all
the requests in order to propose the best service for most of the
users3. As for the synchronization time, we provide a priority
to each user pu. A reasonable weight for a user u is to rely on
the ratio of read requests made by u over the total number of
read requests. However, any other priority distribution can be
used depending on the application needs. In this paper we set
pu = n

ui
r

nr
with nui

r , nr the number of read requests performed
by ui and the total number of read requests on d respectively.
We obtain the following formula to compute the response time
between a set of users U and a set of storage nodes N :

tr(U ,N ) =
∑
ui∈U

[pui
R(ui,N )]

Roughly speaking, the response time between a set of users
and a set of storage nodes is the sum of the time for every user
to receive at least k responses from the system, weighted by
the activity of users. CAnDoR computes, for each data, a set
N of storage nodes such as those two metrics are minimal.
However, as explained above, every system must provide a
trade-off between consistency and availability. This trade-off
may be translated by a different prioritization of those two
metrics. Therefore we propose to weight them according to
the consistency protocol and the access patterns.

B. Setting the weights: consistency and access patterns

CAnDoR relies on the metrics described in Section IV-A.
We explain here how we set the weights in the analytical
formulas in order to be adapted to both (i) the consistency
protocols and (ii) the behavior of the users of the system (i.e.,
data access patterns from a system point of view). Most of the
time, if the system guarantees strong consistency properties
among the replica of a data, then the system should give more
importance to the synchronization time, as this operation is
usually blocking the system. At the opposite, a system that
provides weak consistency guarantees, such as an eventually
consistent or causally consistent system, should prioritize the
response time, to be sure to provide fast responses to the users.
Of course this also depends on the ratio of blocking operations
versus non-blocking operations.

However, depending on the application, these criteria may
vary. For instance, if a system provides eventual consistency
properties but wants to have some guarantees on the data
freshness, it may need to give more importance to the synchro-
nization time. In CAnDoR, these two criteria are modeled by
two coefficients: cc and ca the coefficients for the importance
of consistency and the importance of availability guarantees
respectively. For clarity reason, the sum of these two coef-
ficients are normalized, such as cc + ca = 1. We discuss in

3If it offers a better global performance, a small number of users may suffer
higher latency.

more details the values of these coefficients in Section V. Their
values are static, fixed at the creation of the piece of data.
However, depending on the users behavior, these coefficients
are not enough. Indeed, the more the users read a piece of
data, the more the response time for this particular piece of
data is important, and the more they write on the piece of
data, the more the synchronization is important. For those
reasons, the weights have to take the data access patterns into
account. We thus build weights taking into consideration both:
(i) the static coefficients (representing the consistency protocol
constraints); and (ii) the ratios of read and write requests
(representing the access patterns constraints). We obtain the
two following weights: ws and wr for the synchronization
time and the response time respectively:{

ws = cc.
nw

nr+nw

wr = ca.
nr

nr+nw

C. Time adaptation

As CAnDoR offers a method to dynamically adapt the set
of storage nodes that hold a replica of a piece of data, it is
important to consider a time adaptation. A set that was optimal
at some point in the execution may become a bad choice if
users change their behavior of location. Therefore, CAnDoR
could consider a version of nur , n

u
w that gives more weight

to the request done in the last t time units. However, we do
not expect the behavior to radically change at each instant,
and remembering previous value of nur , n

u
w may give more

precision to the computation. Therefore we consider a time-
moving window on the historic versions of those value huw, h

u
r

that we build in the following way: every time unit, the system
divides huw, h

u
r by two and then add to it the value of nur , n

u
w

before to re-initialize nur , n
u
w. That way, any request made at

some point will impact the computation but will fade with
time and old behaviors will eventually be “forgotten”(i.e. they
will have a negligible impact on the computation). However
if two behaviors alternate with each other, the system will
consider both of them. We consider the following weights for
CAnDoR’s computation:{

ws = wσ.cs.
hw

hr+hw

wr = cr.
hr

hr+hw

Other uses of nur , n
u
w are also replaced by huw, h

u
r (For instance,

the activity of a node described in section IV-A).

D. CAnDoR’s Computation

The CAnDoR algorithms use metrics and weights intro-
duced above to compute a set of storage nodes that should
hold a replica of a piece of data d. It is expected to run for
each single piece of data d. It relies on a set of potential
replicas

∼
N . Each set Ni ∈

∼
N contains exactly RF nodes. If

the storage nodes have enough computation power and if the
number of potential storage nodes is small enough,

∼
N is the

list of all combinations of RF storage nodes. If the number of
potential sets is too high, some heuristic needs to be applied
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to reduce the number of sets in
∼
N . We discuss in more details

this point in Section V.
CAnDoR’s algorithms compute the target set N ∗ ∈

∼
N to

hold the replica of d:

N ∗ = min
Ni∈

∼
N
[ws ∗ ts(Ni) + wr.tr(Ni, U)]

If
∼
N is the list of all possible sets, then we claim that N ∗

is the best placement with high-probability4 according to the
system and the behavior of the user.

Once N ∗ has been computed for a piece of data d, CAnDoR
needs to determine which nodes in N ∗ do not already store
a copy of d and what are the nodes in the system that should
transfer them a copy. Then, each node that holds a copy of d
but is not in N ∗ (i.e. nodes that were in the previous d replica-
set but not in the newly computed one) compute if they should
keep d or not. Usually, a high value of ws should lead the node
to remove the piece of data while a high value of wr will tend
to increase the number of copies. The CAnDoR algorithms are
expected to run periodically. The period between computations
needs to be set to be short enough to be relevant but not too
short to not harm the system with a high computation cost.

V. EVALUATIONS

This section presents the preliminary evaluations of our
approach. To evaluate the performance of CAnDoR, we have
developed a discrete-event based simulator built on top of the
PeerSim [8] simulation engine. PeerSim has been designed
to simulate large-scale distributed systems. We implement the
user nodes and the storage nodes as described in this paper.
As CAnDoR’s approach is per-data, we simulate only one
data in the simulations presented in this paper. However, our
simulation tool provides the ability to simulate a distributed
system holding many different pieces of data.

A. Metrics

• We evaluate the performance gain of our approach.
– The response time for the read and write operations

is the main goal of CAnDoR: the placement strategy
aims at reducing the average global latency while
users access data. We also measure the contact time,
the time needed to contact the closest storage node
for data d. This allows us to evaluate the position
of the nearest replica without considering synchro-
nization time (which can be useful to understand
CAnDoR’s behavior).

– The data propagation time is also an important
metric: this time can be part of read or write latency
(and thus this metric can also help to understand the
system’s behavior) while using strong consistency
protocols; it can also impact data freshness while
using relaxed consistency protocols.

4According to the weights and the metrics introduced above. With high-
probability because the node that runs the CAnDoRcomputation may has some
stale or inaccurate information about the users behavior then N ∗ may not be
optimal.

• The computation time is also studied as it represents the
biggest CAnDoR’s overhead.

B. Simulations scenario and parameters

In all the simulations, one single data is created and ac-
cessed by 50 users. The size of the piece of data is considered
as negligible: we therefore use the term latency and do not
take bandwidth into account.

The 50 users may have one of the two following profiles:
Worker or Lazy. In both case, a user performs a loop (from
the beginning of the simulation until the end) in which it: (i)
performs an action, then (ii) waits a given time. For a lazy
user an action may be a request with a probability of 0.1 or it
can be ”do nothing” (idle). On the opposite, a worker has 0.9
chance to perform a request. For both lazy users and workers,
each request may be either a read or write request, with equal
probability. In the last experiment, user switch profile at the
middle of the run.

Initially, the storage nodes are chosen uniformly at random.
Then we let CAnDoR adapt the placement according to the
parameters introduced in this paper.

The storage nodes are organized in clusters, the communi-
cation time among storage nodes within a cluster is fixed, set
at 1ms. The latency between two clusters goes from 7ms to
19ms and it is between 11ms and 31ms between a cluster
and a user node. Therefore, if only one replica is allowed
in a cluster, the best propagation time is 7ms and the best
response time is 20ms (the shortest latency between two
clusters and a round-trip time between a cluster and a user
node respectively). The number and the size of clusters vary
from one simulation to another. We can also use a high number
of clusters of small size to simulate a very large-scale topology
(with many nodes, not necessarily gathered in clusters).

C. Results and analysis

computation time: In the first series of simulations, we
evaluate the computation time C needed by CAnDoR to find
the best set. As we propose here an exact approach among the
potential sets, CAnDoR needs to evaluate each set in relation
to each user. If we denote Nset the number of sets and Nuser
the number of users, the computation growth linearly with
those factor: C = O(Nset ∗Nuser). To obtain an exact solu-
tion, we must consider every combination of RF nodes among
every storage nodes. In this situation we obtain a factorial
growth of the computation time C = O(Nnode! ∗Nuser) with
Nnode the number of nodes.

We observe, as detailed in Figure 1, that under 130 nodes
(∼ 3 ∗ 105 potential sets) and 50 users the computation lasts
less than 1s and it lasts more than 1 minute with 535 nodes
(∼ 2.5 ∗ 107 potential sets) and 50 users. To mitigate this
time, it is possible to consider only 1 or 2 representative
nodes by clusters, if it is appropriate for the system. Indeed,
the communication within a cluster is usually much faster
than between two clusters or between a cluster and a user
node. In such situations, considering only one representative
node instead of all the cluster nodes provides the ability to
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Fig. 1. Computation time according to the number of nodes

drastically reduce the number of potential sets while still
guaranteeing a near-optimal result. In future works, we plan
to propose heuristics to reduce the number of potential set
in large heterogeneous systems (not necessarily following a
cluster federation topology but rather arbitrary graphs).
ca, cc coefficients: In order to determine the best couple

(ca, cc) we performed a series of simulation with 50 users,
where 7 of them are workers, and 60 clusters with 2 repre-
sentative nodes by clusters. We pose cc = 1 − ca and make
ca vary from 0.1 to 0.9. We evaluate the propagation time
and the median time needed for any storage node to contact a
worker node (Figure 2). It is important to note that this metric
differs from the response time as it does not consider the time
when the request occurs and therefore any potential delay due
to a synchronization. Thus, this metric does not depend on the
consistency protocol.

With ca ≤ 0.3, we observe that the optimal propagation time
(7ms) is reached while the time to contact a worker is around
16ms. With ca ≥ 0.7, the propagation time varies from 11ms
to 18ms but provides the ability to contact a worker in 11ms
in median (from 10ms to 13ms). Finally, when ca = cc = 0.5
we observe that CAnDoR alternates between two preferred
sets: one with good propagation time (7ms or 8ms) and a
medium time to contact a worker, around 14ms (from 12ms
to 15ms) and one with better time to reach a user (10ms to
13ms) but a longer propagation time (9ms). This behavior
is a consequence of the equal distribution of read and write
operations and the same importance to the two constraints
representing consistency and availability.

From those observations we recommend using parameters
close to the following couple in a system that provides strong
consistency properties: (ca = 0.3; cc = 0.7). This couple
provides the ability to get close to an optimal propagation
time (to get a synchronization as fast as possible) while still
offering a reasonable response time. Obviously this depends
on the network behavior and the system parameters. In all
the simulations with strongly consistent data we will use
these values. In a system with eventual consistency properties,
we recommend to users either (ca = 0.9; cc = 0.1) or
(ca = 0.5, cc = 0.5) according to the importance given to

Fig. 2. Computation time according to the number of nodes

the freshness of the data and the number of expected update
operations. When using (ca = 0.9; cc = 0.1), it is important
to note that the propagation time is close to the contact time,
which may result in some case of stale data delivered to
the users. However we use this couple for the rest of the
simulations involving eventually consistent data.

These results have been obtained while restricting the num-
ber of replicas to one by cluster. This restriction has been
made to avoid data loss at the crash of an entire cluster. If this
situation is not expected to happen, it is possible to put several
replicas in the same cluster (for load-balancing for instance).
In this last scenario, the optimal propagation time becomes
1ms and is reached when ca ≤ 0.3 and may be reached
when ca = 0.5 with a high write operations rate. Therefore
one should consider this option only if a whole cluster in not
expected to crash and the propagation time is crucial for the
application.

Influence of the number of workers and clusters: We
run several simulations with different numbers of workers
and clusters to measure the impact of those factors on the
performance gain of using CAnDoR algorithms. Each of
those simulations involves either eventually consistent data or
strongly consistent data and are detailed in Figures 3 and 4. We
first fixed the number of clusters to 60 with 2 representative
storage nodes by cluster and choose the number of workers
between 3 and 10.

With a small number of workers (between 3 and 5), CAn-
DoR provides a great improvement in latency compared to a
random placement. With a strongly consistent data, the optimal
propagation time is reached while the response time goes from
a median of 35ms (from 22ms to 55ms) to a median of 30ms
(from 20ms to 35ms). The high variance in those results is
due to the synchronization during writes operations. If no write
operation is pending, the response time is equal to twice the
latency while the storage node may delay the request for some
time in order to finish the synchronization before responding
to the requesting user. With an eventually consistent data, the
storage node can respond as soon as possible as there is no
synchronization. In this scenario the propagation time may
reach 8ms and the median response time goes from 31ms

6



Fig. 3. Computation time according to the number of nodes

(from 20ms to 42ms) to 22ms (from 20ms to 24ms).
We also perform simulations with similar parameters but

in a read-only scenario with an eventually consistent data.
The median response time then goes to 20ms or 22ms. As
communication times are randomly set at the beginning of
simulation, we observed a small amount of scenarios where
one of the worker had a high latency with every cluster, which
lead to a response time of 32ms for this worker.

As the number of worker increases, the gain of CAnDoR
slightly decreases, to reach a median response time of 24ms
(from 20ms to 30ms) for 10 worker with an eventually con-
sistent data and a median of 33ms (from 22ms to 40ms) with
a strongly consistent data. However the optimal propagation
time is almost always reached when using a strongly consistent
data. The propagation time for the eventually consistent data is
more variable and goes from 8ms to 10ms depending on the
simulation. In the read-only scenario, however, the propagation
time goes up to 18ms (as there is no write operation and a
low consistency constraint) to allow a median response time
of 22ms with 10 workers.

We then fixed the number of workers to 7 and run sim-
ulations with a number of storage nodes from 10 to 150
(here the nodes are scattered: not grouped in clusters). With
a small number of scattered storage nodes (between 10 and
20) the gains of using CAnDoR algorithms are small has
there is a small variation between each storage node and the
random placement may be already close to the optimal more
frequently. We note a gain between 2% and 10%. In large
systems however, with 150 scattered storage nodes, CAnDoR
is much more efficient than a random placement and provides
up to 25% of gains with an eventually consistent data (from
30ms to 22ms) and providing a near optimal response time to
several worker in the system. With a strongly consistent data,
the optimal propagation time is also reached in such system
but the response time is bigger: the median contact time is
close to the one obtain with a random placement, but the best
propagation time allows better performance (35ms instead of
44ms for the random placement).

1) Adaptability over time: In order to observe the dynamic
adaptability of CAnDoR, we run a scenario in which, at

Fig. 4. Computation time according to the number of workers

Fig. 5. Access latency evolution during time for users in groups A and B.
The black vertical line shows when the users from groups A and B switch
profiles.

a given time active workers become lazy while lazy users
become active workers. There are 10 users, partitioned into 2
groups A and B on 5 users. Here, we show a single particular
simulation run (the median and averages are computed on the
users in each group).

At first, in phase 1, the 5 users in group A are active workers
and then becomes lazy in phase 2. Meanwhile, the 5 users in
group B are lazy at first (during phase 1) and becomes active
in phase 2.

Figure 5 plots the average latency for nodes in groups A
and B with respect to time (the vertical black line materialize
the limit between phase 1 and phase 2).

Using a random placement, on this run, the latency would
remain close to the initial one: 28 for users in group A and
30 for users in group B. Notice that for this particular run
the random placement already offers quite good performance.
CAnDoR algorithms enhance the data access latency during
phase 1, especially for the nodes in group A (which are more
active). Then, while the access pattern evolves, in phase 2,
CAnDoR promotes nodes in group B: the placement becomes
better for group B nodes while getting slightly worse for group
A nodes.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we explain how the data placement is crucial in
nowadays distributed storage systems and why the consistency
protocol should be considered along with the users behavior
(access patterns). We then described CAnDoR, our approach
to dynamically place and move the data among the storage
nodes. CAnDoR keeps track of the consistency protocol of
each piece of data and the list of received requests. It uses
these metrics to compute a set of storage nodes that minimizes
both the propagation time and the response time. The weight
of those values is influenced by the consistency model and the
access patterns.

We developed a simulator on top of PeerSim to evaluate
the performance of CAnDoR. The simulation results show
that CAnDoR gives better results compared to a random
placement in large-scale systems (up to 40% gains) at a longer
computation cost (around 3s in a system with 200 nodes). This
is due to a larger selection of potential sets. If the number of
users increases as well, the median gains of CAnDoR sightly
decrease, as CAnDoR determines the barycenter of active
workers. However, in several applications, most pieces of data
are only accessed by a small set of users (personal data for
example).

In future works, we plan to add some tools to handle more
complex consistency models, such as the “k-stable causal”
consistency and the “Just-Right” consistency models. These
models offer different approaches and properties than classic
ones. In particular the “k-stable causal” consistency requires
to propagate any update operation on k nodes before applying
it and to wait for a response from k nodes before delivering
a data to the requesting user. To find the best set for such a
model we will work on formula adjustment with the notion of
“min k” which give us the kth smallest value of a set.

We also plan to propose some heuristics to reduce the
number of sets tested by CAnDoR. That would allow to
implement metrics to compute which number of replica is
optimal for a particular piece of data, with respect to both
the consistency protocol and the user behaviors.
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