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Thermal and mechanical models of magma reservoir
growth need to be reconciled with deformation
patterns and structural relationships observed at
active magma systems. Geophysical observations
provide a series of short time-scale snap-shots (100–
102 years) of the long-term growth of magmatic
bodies (103–106 years). In this paper, we first review
evidence for the growth of magmatic systems along
structural features and the associated deformation
patterns. We then define three distinct growth stages,
(1) aligned melt pockets, (2) coalesced reservoirs, (3)
highly evolved systems, which can be distinguished
using short-term surface observations. We use
two-dimensional thermal models to provide first-
order constraints on the time scales and conditions
associated with coalescence of individual magma
bodies into large-scale reservoirs. We find that closely
spaced intrusions (less than 1 km apart) can develop
combined viscoelastic shells over time scales of 10s kyr
and form laterally extensive mush systems over time
scales of 10–100 kyr. The highest temperatures and
melt fractions occur during a period of thermal
relaxation after melt injection has ceased, suggesting
that caldera-forming eruptions may preferentially
occur long after the main intrusive activity. The
coalescence of eruptible melt-rich chambers only
occurs for the highest melt supply rates and deepest
systems. Thus, these models indicate that, in most
cases, conductive heat transfer alone is not sufficient
for a full coalescence of magma chambers and that
other processes involving mechanical ruptures and
mush mobilization are necessary; individual melt
lenses can remain isolated for long periods within
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growing mush systems, and will only mix during eruption or other catastrophic events. The
long-term history of the magmatic system is therefore critical in determining rheological
structure and hence short-term behaviour. This framework for the development of magmatic
systems in the continental crust provides a mechanical basis for the interpretation of unrest at
the world’s largest volcanoes.

This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and
dynamics’.

1. Introduction

(a) Long-term growth of magma bodies
Melt is generated in the lower crust or upper mantle, and transported through the mid-crust
along structurally controlled pathways, typically ductile shear zones [1,2]. Magma which rises in
discrete, short-lived pulses, stalls at rheological or lithological boundaries in the upper crust [3,4],
where it cools and crystallizes forming composite bodies (after [5–7]). In this paper, we adopt
the terminology of Bachmann & Bergantz [8] and use the term ‘magma reservoir’ to describe
a region of partially molten rock with varying proportions of crystal, melt and gas. Localized
pockets in which the melt fraction is high enough (greater than 50%) to suspend crystals can
be thought of as ‘magma chambers’, which are sufficiently mobile to erupt. At low melt fractions
(less than 50%), the crystals are in contact forming a rigid or semi-rigid framework with interstitial
melt and are referred to as ‘mushes’. The orders of magnitude difference in viscosity between
these components creates inherent instabilities: melt segregation likely occurs over time scales of
103–105 years, whereas instability, re-organization and amalgamation of the high-melt, low-
viscosity components occur rapidly in months or years [9–12]. High temperatures within the
reservoir alter the rheological and mineralogical properties of the surrounding rock, forming a
viscoelastic contact aureole and in some cases partial melting.

Having undergone multiple phases of deformation, the continental crust is typically
heterogeneous, with faults and lithological boundaries forming sharp rheological contrasts in a
range of orientations. Plutons, which are the fully crystalline remnants of magma reservoirs, are
often located on major pre-existing faults, and elongated along them [13,14]. Although a causative
relationship is typically inferred, the nature of this relationship is rarely discussed explicitly (e.g.
[15,16]). Some studies assume that motion on the fault deforms the weak, magma reservoir (e.g.
Donegal [13]), while others show that large batholiths are composite bodies with the individual
plutons sequentially emplaced along a preferential alignment (e.g. Adamello [17]; Ardnamurchan
[18]). A good illustration of this contrast is given by the Mono Creek Pluton (MCP) and Tuolumne
Intrusive Suite (TIS) of the Sierra Nevada batholith (figure 1): the MCP is texturally homogeneous
and the internal fabrics are consistent with syn-magmatic NNW-SSE shear, while the TIS consists
of a series of at least four compositionally distinct, nested plutons each of which is internally
homogeneous and elongated NNW-SSE. These hypotheses are not mutually exclusive but raise an
interesting question regarding the nature of the tectonic control: do faults simply act as pathways
for magma ascent, or is active deformation important?

Plutons are typically longer than they are thick, with small plutons growing laterally and then
inflating vertically [20–22]. In plan view, small plutons tend to be circular and form quickly, while
larger ones are more elongated and grow over longer time periods [19]. De Saint Blanquat et al.
[19] interpret this in the context of active faulting: individual injection events occur sufficiently
rapidly that tectonic strain is negligible, whereas the assembly of large plutonic bodies occurs over
time scales such that regional tectonic stress fields have the time to deform the growing plutonic
body. However, the same observation could be explained if plutonic bodies grow initially by the
formation of small magma chambers along a fault, which coalesce into an elongated reservoir that
only grows vertically once the surrounding crust is sufficiently hot for ductile deformation. This
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Figure 1. Contrasting internal structure of two NNW-SSE elongated plutons within the Sierra Nevada Batholith. The Tuolumne
Intrusive Suite (TIS) is a nested set of elongated plutons (JP, HD, CP and KC), while the Mono Creek Pluton (MCP) is sheared, but
internally homogeneous (adapted from [19]). (Online version in colour.)

concept is consistent with the model of Karlstrom et al. [22], which shows that the distribution of
size preserved intrusions can be approximated by a reverse-energy cascade model of the merging
of small intrusions until irreversible deformation and solidification occur.

The orientation of calderas can be used as a proxy for the shape of the magma reservoir, and
the orientation of elliptical calderas can therefore be used to distinguish between the influence
of active (e.g. [23]) and pre-existing structures (e.g. [24]). In the East African Rift, for example,
many calderas are aligned with the major, pre-existing, cross-cutting faults rather than the current
stress field [25,26], suggesting that in this case at least, passive pathways are as important as
active strain.

(b) Geophysical evidence
Pressure changes within magma reservoirs can be inferred from surface deformation. Over 220
volcanoes are known to have deformed in the last few decades and while some examples can
be attributed to hydrothermal or post-eruption activity, yet more have been linked to magmatic
processes [27]. To the first order, the classic ‘volcano deformation cycle’ pattern of radially
symmetric co-eruptive subsidence and inter-eruptive uplift has been observed at a number of
volcanoes with different characteristic lengthscales and time scales [27]. Yet, a recent global review
showed that while deformation has a strong statistical link to eruption, only half of all volcanoes
that exhibited deformation erupted [28].

High-resolution maps of volcano deformation reveal complexity that was not apparent during
the era when volcano geodesy was based on infrequent point measurements (figure 2). The
simplest model, that of a point source in an elastic half-space [30], satisfies the observations in
a surprisingly large number of cases, but multiple sources, offsets from the vent or time-varying
pressure histories are often required (e.g. [31–34]. In other cases, the deformation is asymmetrical
and requires complex source geometries, such as ellipsoidal magma bodies or elongated sills (e.g.
[35,36]). These observations are consistent with the concept of a magma reservoir composed of
a crystalline mush containing multiple lenses of high melt-fraction magma. The time is right
to consider the conditions of magma storage, particularly the thermo-mechanical history of the
reservoir, when interpreting geodetic signals.
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Figure 2. (a) Modelled surface deformation at Paka Volcano. Kenya showingmultiple sources of pressurization, consistentwith
multiple alignedmagma chambers. Each coloured fringe corresponds to 2.8 cmof deformation in the satellite line of sight. Circle
shows the vent and the black line is the extent of the edifice (with Silali to the north). (b) Schematic E-W cross-section showing
approximate location and depth of modelled sources. After [29]. (Online version in colour.)

Large regions (tens of km3) of partial melt (greater than 10%) have been identified at depths
of 5–20 km using geophysical methods including seismology, magnetotellurics and gravity (e.g.
[37,38]) and references therein). Many of these are asymmetrical with respect to the surface
volcanic features, or even offset (e.g. [39–41]). Several mechanisms are consistent with the
observation that zones of partial melt are aligned with fault systems (e.g. [42]): (i) the fault
zone acts as a pathway for magma ascent, (ii) the magma is accommodated by motion on the
fault zone forming a local patch of extension, and (iii) the shape results from the shearing of a
weak magma body.

(c) Surface manifestations
Magma, hydrothermal fluids and volcanic gases have low density and viscosity and it is likely
that they rise almost vertically, exploiting the most convenient pathway with minimum lateral
transport (except in a few cases where there is an impermeable cap near the surface). Thus, the
patterns of vents, fumaroles and degassing measured at the surface reflect the lateral extent of the
underlying magmatic reservoir [43].

Radial and tangential patterns in the distribution of cones and vents [44,45] or in subsurface
intrusions [46–48] can be attributed to the local stress field, which is a superposition of stresses
from regional tectonics, topographic load and magma pressure (e.g. [45,49,50]). Caldera systems
are typically low relief, so the confining stress caused by the topographic load is small, but
cycles of uplift and subsidence are commonly observed (e.g. [51,52]) associated with a radially
symmetric but temporally variable stress field [53].

However, in many cases, alignments of cones and vents are associated with shallow faults,
which can be attributed to the active regional stress regime (e.g. [54]), inherited basement
structures (e.g. [55]) or caldera formation (e.g. [56,57]). Distinction between active and pre-existing
faults is complicated by the tendency for older faults to be reactivated by active stress fields
(e.g. [58,59]).

(d) Outline
Based on the previous review, we propose a conceptual model of magma reservoir development
based on the principle that magma reservoirs grow through short, discrete injections, starting
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Figure 3. Conceptualmodel of the growth ofmagma reservoirs from (a) isolatedmelt lenses aligned along a fault to (b)mature
reservoirs whose surface characteristics are controlled by a caldera ring fault and finally (c) highly evolvedmush systems which
undergo frequent internal reorganization. (Online version in colour.)

with small, transient magma chambers aligned with faults, which coalesce over time to produce
an elongate region of partial melt. According to this conceptual model, the thermal evolution
of the reservoir can be subdivided into three distinct phases, each associated with a different
reservoir size, shape, gas content and rheology (figure 3). The difference in lateral extent of the
magma reservoir mean fluids in the crust above the reservoir would exploit different pathways,
causing observable differences in the distribution of volcanic vents, fumaroles and degassing. We
identify and discuss modern analogues for each of these stages.

We then consider the response of the magma system to a fresh input of magma, and
conclude that the expected patterns of surface deformation would be distinct. Thus we show
that (a) the patterns of surface deformation can be used to infer some aspects of the thermal
history of the reservoir and (b) the thermal history of the reservoir must be considered when
interpreting patterns of surface deformation. Finally, we develop simple thermal models to
investigate the time scales over which closely spaced magma bodies would coalesce, with
particular reference to (a) the viscoelastic aureole and (b) the region of partial melt. These thermal
models do not involve mechanical processes and thus offer upper bounds on the time scales
involved.

2. Conceptual model

(a) Stage 1: aligned melt lenses
Discrete batches of magma rise upward along mid-crustal shear zones forming a line of
small magma chambers at rheological or lithological boundaries (figure 3a). Each magma
chamber produces individual deformation patterns, which may overlap in space and time. The
magmatic and hydrothermal systems are localized above the shear zone, such that magmatic
and hydrothermal fluids exploit the shallow extension of the fault as they rise to the surface.
Fumaroles and volcanic vents, many of them monogenetic, are thus aligned along the dominant
structure.

Examples include Puyehue Cordon-Caulle, Chile, which lies at the intersection of the major
trench-parallel strike-slip system, the Liquiñe-Ofqui Fault Zone, (LOFZ) and an old basement
structure [55]. Deformation associated with the 2011 eruption indicates the involvement of
multiple small magma bodies aligned along this inherited structure [33,60]. Another example,
Corbetti, Ethiopia, lies at the intersection of the Main Ethiopian Rift with the Goba–Bonga
lineament, which has had a major influence on the tectonic evolution of the rift system [61,62].
Evidence for the influence of the cross-rift structure on the magmatic system comes from a
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number of directions and a range of time scales: patterns of surface deformation are semicircular,
bounded by the fault; seismicity is aligned along the fault, and the distribution of volcanic vents
is statistically closer to the line than a random distribution [26]. In both these cases, there is also
evidence that a larger magma reservoir is active during different time periods [63–65], suggesting
a transition in behaviour towards stage 2.

(b) Stage 2: mature reservoir
The individual chambers coalesce into a large, elongated reservoir containing many small
chambers (figure 3b). The large magmatic and hydrothermal systems extend beneath the caldera
ring fault, which is exploited as a pathway for rising fluids. Coalescence can take place through
a number of mechanisms depending on depth and geometry, for example the brittle collapse
of isolated blocks of wall-rock or ductile flow. The deformation pattern is associated with
the viscoelastic behaviour of the reservoir, which may be elongated in shape. The behaviour of
the individual chambers may be reflected in the time-dependent pressure history. The magmatic
and hydrothermal systems are now laterally extensive and the dominant pathway for magmatic
and hydrothermal fluids is the caldera ring fault. The result is a ring-shaped edifice, with volcanic
vents and fumaroles distributed around the caldera rim.

Examples include Laguna del Maule, Chile, Long Valley, USA, and Aluto, Ethiopia, which
demonstrate that the presence of a ring fault controls the surface expression of magmatic systems
regardless of their tectonic setting. At Laguna del Maule, postglacial silicic eruptions form a
concentric ring around a central lake and in recent years there has been a prolonged pulse of rapid
uplift [57,66]. At Long Valley, recent eruptions are concentrated along the caldera and regional
fault systems [67] with seismicity along the southern caldera fault [68]. By contrast, multiyear
inflation episodes in 1990–1995 and 2011–2014 were driven by a source in the centre of the
caldera [69]. At Aluto, Ethiopia, the caldera ring fault acts as the major pathway for degassing,
hydrothermal upwelling and magmatic fluids [56,70,71]. Aluto has been subsiding for many
years, with occasional pulses of rapid uplift [72,73].

(c) Stage 3: evolved system
Eventually, the large reservoir reorganizes as low-viscosity fluid rise through the crystal-
rich mush. Faults and fractures within the extended roof are reactivated and magmatic and
hydrothermal fluids exploit these pathways forming volcanic vents and fumaroles distributed
across the caldera floor (figure 3c). Owing to the large size of the reservoir and the ability of mush
to reorganize internally, fresh magma input does not necessarily result in surface deformation.
However, frequent, spatially complex deformation is caused by migration of fluid between
sources and phase changes with the mush. Numerous cycles of deformation reactivate local and
regional faults and fractures across the highly extended caldera floor. Fluids from the laterally
extensive hydrothermal and magmatic systems rise along these pathways leaving volcanic vents
and fumaroles distributed across the caldera floor.

The classic example is Yellowstone, USA, which is an evolved magmatic system with frequent
deformation, active hydrothermal system and eruptions from vents distributed across the caldera
floor [74–76]. Seismic tomography shows that the shallowest portion of the crustal magma
reservoir is overlain by a highly fractured, fluid-filled region, suggesting that magmatic fluids
(gas, hydrothermal fluids and melt) have migrated to shallower depths along existing fractures
[77]. Campi Flegrei, Italy, is an interesting example as it appears to lie at the border between
stages 2 and 3. It has experienced multiple pulses of uplift which are attributed to interactions
between magmatic and hydrothermal system [78]. Older vents (12–8 kyr) are distributed along
the marginal faults of the Neapolitan Yellow Tuff caldera, while younger vents (less than 5 kyr)
occur on the caldera floor, which is dissected by reactivation of a number of regional fault
systems [79].
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(d) Associated deformation
Surface deformation and eruption occur in response to pressure changes within a magma
reservoir; thus to understand deformation patterns and the types of precursory activity that might
precede eruptions, it is first necessary to understand what causes and controls changes in pressure
within the magma reservoir. In the first case, we consider the input of new magma into a spherical
reservoir of volume V at a mass injection rate, dM/dt. This causes a viscoelastic response in
the crust, plus changes in pressure dP/dt, temperature dT/dt and gas fraction dεγ /dt [80–83].
Processes of crystallization and exsolution further alter the relative abundance of crystal, melt and
gas phases, such that the mixture density evolves with time; for example, significant overpressure
can also be generated by ‘second boiling’ [84]. To fully describe the thermo-mechanical evolution
of the reservoir requires coupled equations for the conservation of mass, water and energy, but
here we illustrate the dominant controls on reservoir pressure using the conservation of mass
following fresh magma input (following [83]),

dM
dt

= ρV
[

�P
ηr

+
(

1
βm

+ 1
βr

)
dP
dt

+ α∗ dT
dt

+ ρ∗ dεg

dt

]
, (2.1)

where βm and βr are the compressibility of the magma and reservoir, respectively, the term
�P/ηr describes the viscous growth in response to an overpressure, �P according to the effective
viscosity. ηr and α* and ρ*ρ* are coefficients associated with thermal expansion and density
defined fully in Degruyter & Huber [83].

For a given mass input, the rate of pressurization is determined by the reservoir size,
V, gas content (through magma compressibility, βc) and reservoir shape (through reservoir
compressibility, βr) [85]. Degruyter et al. [85] only consider spherical chambers, but we note that
the compressibility of a spherical cavity is always less than that for an ellipsoidal cavity or penny-
shaped crack [86] which leads to a mismatch between chamber and dyke volume for intrusions
[87]. Thus we consider reservoir shape, βr, as a third important control on magma pressurization.
Finally, the influence of the viscoelastic shell of changing dimensions can be investigated using
the analytical solution for a spherical chamber of radius R1 within a viscoelastic shell radius
of R2, resulting from a pressure change P [80,88]. At t = 0, the deformation is equivalent to a
chamber of radius R1 embedded in a purely elastic medium and at t → ∞, the deformation pattern
approaches that of a magma chamber of radius R2, thus the effective radius of the chamber
increases from R1 to R2 with time since the pressure change. Increasing the width of the shell
with respect to the chamber radius (R2/R1) increases both the characteristic decay time and the
magnitude of surface displacement [80,88]. The importance of the viscoelastic response likely
depends on the balance between the characteristic viscoelastic time scale (e.g. Maxwell) and the
magma flow time scale (e.g. Poiseuille) which are in turn controlled by magma and host rock
viscosity and depth [89]. However, the Maxwell time scale for crust with a ‘typical’ viscosity on
the order of 1018 Pas is years to decades, compatible with the time scales for geodetically detected
volcanic unrest.

This paradigm is most appropriate for describing small, transient reservoirs with a high melt
fraction because the mechanisms of multiphase flow operating within an extensive mush, while
still poorly understood, are likely to be significantly different. One hypothesis is that magma
migrates upwards through a reorganization of melt and mush which does not intrinsically cause
any significant volume change [90], and that surface deformation is driven solely by phase
changes, particularly gas exsolution and crystallization [9]. However, melt segregation occurs
over long time scales (103–105 years) and over the short time scales associated with unrest
(10−1–101 years) it is feasible to assume that only the melt and gas components are mobile and
that the mush behaves as a viscoelastic medium surrounding the chamber.

Within this framework, the key parameters that determine the response to an intrusion are
the size, shape, gas content and thermal aureole of a magma reservoir, which in turn depend
on its long-term history of recharge and eruption. From this perspective, the earliest stage of
our conceptual model can be further subdivided: (a) where isolated melt bodies intrude cold,
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Figure 4. Conceptual model of the coalescence of magma bodies and their viscoelastic aureoles, and the influence on surface
deformation. Solid lines show the instantaneous elastic deformation and the dashed lines show the integrated deformation
over the longer term, including the viscoelastic response. Numerical models (figure 7) show that stage 4 is rarely achievable at
realistic magma fluxes. (Online version in colour.)

elastic crust producing instantaneous deformation, but no viscoelastic response and (b) repeated
intrusions have produced a viscoelastic aureole and hence long-term deformation, but these
remain spatially independent (figure 4a,b). The second stage of the conceptual model corresponds
to a situation where the melt bodies remain separated, but the magma reservoirs have coalesced
producing a single long-term signal in response to transient pressure changes in one or more
melt lens (figure 4c). Finally, if the melt supply is large enough to overcome the cooling between
intrusions, the melt lenses themselves may coalesce to form a single, large magma chamber
(figure 4d). Whether or not such a situation is physically plausible is an interesting question,
and we will use thermal models to address it in the subsequent sections. However, it seems
likely that such a situation would only arise in unusual conditions and not be stable for
long periods.

3. Numerical models
To fully reproduce the conceptual model described above would require a complex simulation
incorporating thermal and mechanical processes within a heterogeneous and fractured crust.
Such simulations are beyond the scope of this paper, and would be challenging to interpret in
terms of the key processes. Instead, we focus on the temperature field associated with closely
spaced intrusions and investigate the time scales over which the viscoelastic aureole and magma
reservoir (zone of partial melt) would coalesce through purely thermal processes. This approach
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implicitly assumes that magma chambers converge when the country rock between intrusions
partially melts, and is likely an upper bound on the time scales of coalescence as mechanical
links via viscous deformation or hydraulic conduits will be facilitated by increasing temperature
and depth.

(a) Thermal modelling
To construct thermal models of the evolution of magma reservoirs, we adapt the finite-difference
numerical scheme described by Annen [5]. Heat transfer is calculated by solving the time-
dependent heat equation for conduction in a solid medium (3.1), including the latent heat (L)
associated with phase changes determined from experimental temperature (T) - melt fraction (X)
relationships; ρ, cp, L, k are density, specific heat capacity, latent heat and thermal conductivity.

ρcp
∂T
∂t

+ ρL
∂X
∂t

= k∇2T. (3.1)

The intrusions, reservoir and surrounding country rock are discretized and the temperature
and melt fraction of each cell tracked. The intrusions grow by the accretion of successive
sill-like injections (figure 5). Rather than specifying an axisymmetric geometry and using a two-
dimensional radial slice as in Annen [5], we use Cartesian coordinates with a reflective boundary
condition (figure 5). This means the lateral heat flux out of the system is matched by an incoming
flux to simulate the effect of a neighbouring magma body. The disadvantage of this geometry is
that it assumes the body is infinitely long in the third dimension and thus does not capture the
full three-dimensional shape of the reservoir and hence overestimates the rate of heat transport.
Nonetheless, the computational advantages of using a simple geometry enable us to explore the
parameter space more fully and investigate the first-order controls and time scales over which
melt bodies and their surrounding aureoles coalesce.

To explore the range of possible chamber shapes and conditions, it is necessary to explore
the parameter space defined by (i) the time-averaged growth rate of the intrusion, (ii) the depth
of the intrusions, (iii) the spacing between intrusions. The vertical growth rate of the intrusions
is determined by the injection thicknesses and the frequency of injections. Cells with crystal
fractions less than 0.5 are considered part of the chamber, and those with temperatures greater
than the background geotherm as part of the viscoelastic shell. While ideal for characterising
stage 1 of the conceptual model, care must be taken when applying this approach to the dynamics
of mush systems, which dominate during stage 3, and operate to some extent, during stage 2.

In this preliminary study, we explore growth rates of 0.1, 0.05 and 0.025 m per year,
corresponding, respectively, to injections of 200 m thick emplaced every 2000, 4000 and 8000
years over a total duration of 50 000, 100 000, 200 000 years. At lower growth rates, the magma
solidifies between injections and no large magma chamber is generated [92]. Whether higher
growth rates are realistic is a debated issue. Regardless of this issue, results tend to plateau at
high growth rates and the system behaves as if the whole body of magma was instantaneously
emplaced [93]. The exact injection thickness does not affect significantly the results, provided
the growth rate is kept constant by adjusting the frequency. After the intrusion has reached
a cumulated thickness of 5 km, the system is left to thermally relax during a period of time
equivalent to the growth duration. We tested intrusions growing downwards from 5 to 10 km
depth, 8 to 13 km depth and 12 to 17 km depth. The horizontal spacing between two intrusions is
0.5, 1 or 2 km. The parameters used in the simulation are reported in table 1. The same properties
are used for the intrusion and the country rock. The relationship between melt fraction, X, and
temperature, T, is from Caricchi & Blundy [91] and is shown in figure 5:

X = 1 − (a + b. ∗ sinh(c. ∗ T′ + d)) (3.2)

with T′ = T − Ts

Tl − Ts
, (3.3)
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Ts is the solidus at 670°C, Tl is the liquidus at 930°C, a = 5.8213 × 10−1, b = 8.9078 × 10−2,
c = −4.8306 and d = 2.257.

The viscosity prior to melting is given by

η = Ad exp
(

H
RT

)
, (3.4)

Ad, the Dorn parameter, is 109 Pa s [94,95], H, the activation energy of creep mechanism, is
135 000 J mol−1 [96] and R is the perfect gas constant. The viscosity is only calculated in the
absence of melt as equation (3.4) is not valid above solidus.

(b) Results
We calculated temperatures, viscosities and melt fractions mid-way between two intrusions, i.e.
on the right reflective boundary of the numerical domain (figure 5). We expect the heat flux at
this point to be twice that from an individual intrusion at a similar distance. We recorded the time
needed for the first melt to appear at this boundary, corresponding to the coalescence of the mush.

Figure 6 illustrates the evolution of the maximum temperatures and viscosities mid-way
between intrusions, for example with spacings of 2 km (figure 6a) and 1 km (figure 6b). In both the
cases shown, the intrusions grow downwards from 8 to 15 km depth over 100 kyr. For a spacing
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Figure 6. Example of simulation for intrusions growing from 8 to 13 km depth over 100 kyr showing the evolution of the peak
temperature, viscosity and melt fraction mid-way between intrusions. The dashed lines mark the first change in temperature
and the appearance of melt and the plain line the last magma injection. The viscosity computation is only valid before melt
appearance. (a) For a spacing of 2 km in which no melt appears, and (b) for a spacing of 1 km, where melt appears on the
boundary approximately 70 kyr after the start of injection. (Online version in colour.)

of 2 km, the temperature on the reflecting boundary starts to increase after approximately 50 kyr,
but does not reach high enough temperatures for melt to form. The viscosity gradually drops
from 1019 Pas, reaching 1017 Pas after 120 kyr forming a single viscoelastic shell surrounding two
distinct mush systems (figure 6a). For a spacing of 1 km, the temperature starts to increase 18 kyr
after the first magma injections, and the viscosity drops to 1016 Pas before the first melt appears
on the reflective boundary 71 kyr after the first injection. The temperature and melt fraction
peak at 140 kyr, equivalent to 40 kyr after the last injection. The maximum melt fraction is 0.3,
which means although the mush system has coalesced, the eruptible melt lenses remain isolated
(figure 6b).
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We then compare simulations for a range of magma fluxes, intrusion spacings and depth.
As expected, the maximum temperature and melt fraction between the intrusions increases
with depth and magma injection rates and hence the time taken for coalescence also decreases
(figure 7). Furthermore, when the spacing between the two intrusions decreases, the maximum
temperature and melt fraction increase and the time to mush coalescence decreases. This is
primarily because the distance between the intrusions and the midway point has decreased.
For the largest spacing tested (2 km), the mush zones only coalesce for the deepest experiment
(12–17 km), and in this case, coalescence takes place as the system thermally relaxes, after the end
of magma injections (figure 7).
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The convergence of magma chambers (melt fraction ∼=0.5) is reached in only one of our
simulations—at the closest spacing (0.5 km) and greatest depths (12–17 km) tested. Snapshots
of this simulation are shown in figure 8. After 17 kyr, the viscoelastic aureoles have coalesced
to produce a single mush system, but the melt bodies remain separated. After 84 kyr, the melt
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fraction between intrusion is 0.49 and the melt bodies are coalescing into one large magma
chamber. Interestingly, this happens 34 kyr after the intrusion has ceased growing.

4. Discussion
The preliminary simulations presented here confirm that our conceptual model of the coalescence
between magmatic bodies is plausible. A brief exploration of the physically realistic parameter
space suggests that extensive low melt-fraction mush systems can develop over the time scales
typical for magma injection, but coalescences of melt-rich lenses is rare if due only to conductive
heating and partial melting. An interesting result is that, due to slow heat diffusion, coalescence
may happen after the main intrusive episodes, so that major caldera eruptions do not necessary
coincide in time with the main intrusive activity. The calculations are limited by the fact that they
were two dimensional and did not involve any mechanical processes; no convective processes or
fluid migration was considered and we tested only for one type of rock composition and melting
behaviour. Nevertheless, our calculations suggest these models have the potential to explain
many of the observed features of large magma reservoirs and deserve further exploration.

Within this framework, mushes coalesce and magma chambers converge, when the country
rock between intrusions partially melts. The ability of rocks to melt strongly depends on their
composition and H2O content. In the cases presented here, compositions are dacitic and melt
appears at 670°C. Moreover, the melting behaviour of injected magma and country rock is similar.
In nature, if the country rocks is dehydrated and refractory, mush coalescence would not happen.
By contrast, coalescence would be favoured if a hot mafic magma is injected in a wet fertile
country rock [97].

For most of the parameter space explored, the melt fraction between the intrusions remained
below 0.4, although the wider mush system had coalesced. In a real system, we might expect the
size of the magma chambers to be reduced by eruption of mobile, high melt fraction material,
while the surrounding immobile mush continues to grow. This suggests individual melt lenses
can remain isolated for long periods within growing mush systems, and will only mix during
eruptions or other catastrophic events.

In our numerical models, for the melt lenses to coalesce, they must be deep, close to each
other, and the magma supply rate must be sufficiently high. In nature, a physical disruption of
the mush between the magma chambers could occur at low melt fractions and lead to a merging
of the chambers. This disruption can be caused by a tectonic event or by an eruption from one
of the chambers and the ensuing magma depressurization (e.g. [98]). The connection of formerly
separated melt lenses during caldera forming eruptions has been identified from the petrological
and geochemical record of the erupted products [99–101], and from geophysical observations
(e.g. [33,102]).

Finally, although these models do not directly assess the structural controls of magma reservoir
growth, they clearly demonstrate that mush zones preferentially develop between closely spaced
intrusions. Thus growth will be favoured in directions along which structural features cause
intrusions to align, and inhibited away from them. Possible mechanisms for such an alignment
might include an increase in permeability, stress focusing or active fault motion, but this study
does not discriminate between them.

5. Conclusion
We have presented a new conceptual model that integrates short-term observations of volcanic
systems, with the long-term growth of magmatic systems. We adopt the premise that systems
start as a set of closely spaced, but isolated intrusions which grow and coalesce through thermal
diffusion. We identify three distinct stages of coalescence: the viscoelastic shell, the solidus (melt
fraction greater than 0) and the eruptible melt (melt fraction greater than 0.5). We explore a
two-dimensional numerical model using a reflective boundary condition to simulate the growth
of closely spaced reservoirs and track the conditions midway between intrusions. In most
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simulations, the temperature starts to rise after 10s kyr, indicating that the viscoelastic aureole has
coalesced, and the melt fraction starts to rise after 10–100s kyr. The temperature and melt fraction
are greatest for deep, closely spaced intrusions at high magma supply rates, and coalescence
occurs most rapidly in these conditions. The temperature and melt fraction peak during a period
of thermal relaxation suggesting the optimal conditions for caldera-forming eruptions might
occur 10s kyr after the magma supply has ceased. For most of the simulations, melt fraction does
not reach 0.5, indicating that individual lenses of eruptible magma remain isolated within a larger
mush system.
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