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Highlights:  

- The network visualization is a very relevant tool for decision making analysis. 

- In the context of life cycle optimization of whole buildings, computational time is a key 

issue (climate change, uncertainties, detailed model…).  

- Surrogate models are very useful to reduce computation time: four strategies have been 

presented concerning the choice of new individuals in the adaptive design of 

experiments 

- Satisfaction functions can be used in the adaptive design of experiment in order to 

reduce computational time (strategy n°4) 

Abstract:  

We present a building design optimization methodology that has been developed to address 

issues that researchers and engineers are currently facing when addressing the life cycle 

optimization of Nearly Zero Energy Buildings (NZEBs). In order to reduce the required 

computational time, a Kriging model is used to surrogate NZEB performance criteria during 

the optimization process. The error estimation of the Kriging model is used for an adaptive 

sequential design to improve the Kriging model accuracy. Α genetic algorithm (NSGA-II) is 

considered efficient to find the global optimal solutions. We also propose a new algorithm to 

reduce the calculation time even further. The new individuals of the adaptive sequential 

design are filtered with satisfaction functions. It means that only the useful part of the 

Pareto front will be determined. Finally, we use network visualization for decision-making. 

We show that this approach is very powerful to help designers find one solution in the 

context of multi-objective optimization. Moreover, the partitions can give useful information 

about the characteristics of the optimal solutions. 

1. Introduction 

The residential sector consumes about 40% of the total annual final energy of developed 

countries (IEA, 2008). In 2015, the final energy consumption of the residential sector was 

25.3% of the total final energy consumption in the European Union (EU). The energy ratio 

used by the EU households in 2015 for space heating was 64.7%, for domestic hot water 



(DHW) 13.9%, for lighting and other appliances 13.8%, and for air conditioning 0.5% of the 

total final energy of the residential sector (European commission, 2017). In an attempt to 

reduce the energy use in buildings, the EU applied a policy named "Energy Performance of 

Buildings Directive" (EPBD). The concept of "nearly Zero-Energy Buildings" (NZEB) has been 

defined in the EPBD : these buildings balance their small yearly energy consumption with 

electrical production using renewable energy. By the end of 2020, all new buildings will be 

required to be NZEBs. 

The Energy Building Design (EBD) for NZEB is challenging in many ways. One challenge is to 

cover a large amount of their energy needs using renewable energy sources (RES) (N. Kalkam 

et al., 2012; G. Comodi et al., 2014; A. J. Marszal et al., 2011). This is problematic because 

RES depend highly on the climate of the building location. This means that the energy supply 

from RES does not always match the energy needs (S. Cao et al., 2013). The designer cannot 

therefore easily size, for example, the required installed power of the RES and the storage 

capacities (thermal and electrical) to meet the energy needs. Considering electricity, as feed 

in tariff variation is a downward trend, storage with batteries and self-consumption also 

become key issues.     

Another challenge is to reduce the relatively high value of NZEBs embodied energy 

compared to their annual energy consumption (R. Giordano et al., 2017; R. Giordano et al., 

2015; G. A. Blengini et al., 2010; M. Karimpour et al., 2014; T. Ramesh et al., 2010). Once the 

operational energy needs of a building during its lifetime are balanced by the use of RES, 

then the embodied energy, i.e. the energy used during its construction, becomes significant 

(Y. Chen & S. T. Ng, 2016; P. Chastas et al., 2016; E. Ayaz & F. Yang, 2009; R. Fieldson et al., 

2009; Ibn-Mohammed T. et al., 2013). This leads the designer of a NZEB to perform life cycle 

analysis (LCA) which is a more comprehensive approach that includes embodied energy 

assessment. Considering the building life time, the designer should also account for the 

climate change. C. Roux et al. (2016) performed a LCA and life cycle cost (LCC) assessment 

and X. Song et al. (2017) an energy consumption analysis on residential buildings, both 

incorporating a weather data prediction on the climate on future years. To account for 

climate change, more dynamic simulations on possible climate scenarios are required. These 

extra simulations add to the overall increase of computational time. 

In addition, another issue is the complexity of modeling a NZEB as a whole (envelope, 

systems, etc.) that increases the computational time even further. Therefore, NZEB 

optimization needs  to reduce the required computational time using specific methodologies 

(M. Wetter & E. Polak, 2004; L. Magnier et al., 2010). Moreover, the designer of a NZEB 

should consider many performance criteria, such as the cost, thermal comfort, embodied 

energy, CO2 emissions, energy consumption, RES production, durability... All of the factors 

mentioned above lead to the need for a global approach of NZEB optimization (R. Evins, 

2013). Thus, the designer should perform a multi-objective optimization that will result in 

many possible optimal solutions. These optimal solutions can be presented in a Pareto front.  

Pareto fronts can be a good tool for the decision maker to choose a solution but it can be 

rather impractical for more than two performance criteria. There are many different Multi-

Criteria Decision Making Analysis (MCDA) methods that can be used to post-process optimal 



solutions in EBD. Among  these MCDA methods are TOPSIS e.g. used by Q. Jin et al. (2017), E. 

Wang et al. (2017); Analytical Hierarchy Process (AHP) e.g. used by J. Si (2016), F. Roberti 

(2017), E. Mulliner (2016); Elimination and Choice Expressing the Reality (ELECTRE) e.g. used 

by T. Catalina (2011); Complex Proportion Assessment (COPRAS)  e.g. used by R. 

Volvačiovas(2013), E. Mulliner(2016); SMAA (Stochastic Multi-criteria Acceptability Analysis) 

e.g. used by J. Iwaro (2014) and Stochastic Multicriteria Acceptability Analysis used by K. 

Kontu (2015). Furthermore, it is not common in EBD literature, to use decision making tools 

before post-processing, i.e. integrated in the optimization algorithm (M. S. Cherif, 2008). 

This could help reduce calculation time if the optimal solutions of little interest were not 

considered. 

Building and energy systems optimization is currently a very active research area. Many 

authors are interested in optimizing a building’s envelope and energy systems considering 

more than one performance criteria, i.e. multiobjective optimization (MOO) (E. Antipova et 

al., 2014; J. Carreras et al., 2014), like Wu et al. (2017) that apply a mixed integer linear 

program (MILP) optimization to minimize both the greenhouses gas (GHG) emissions and the 

life cycle cost of buildings’ energy systems and envelope on a community level. Others, like 

Penna et al. (2015) take three objectives into account (energy savings, costs and indoor 

thermal comfort) and apply the NSGA-II algorithm to define the optimal energy measures on 

a building as a whole, including both energy systems and envelope. Moreover, Evins, R. 

(2013), Attia, S. (2013) and Machairas, V. (2014) have presented detailed literature reviews 

on optimization methods, used for EBD. In reviewed EBD literature it is less common to 

optimize more than three objective functions simultaneously (Penna P., 2015). 

The commonly used algorithms in building energy efficient design optimization can be 

grouped into three categories, namely evolutionary algorithms, gradient-based search 

algorithms, and hybrid algorithms (K. Terzidis, 2006). Several reviews that focus on 

performance-based building design optimization or similar methods are available. Evins, R. 

(2013) conducted a review on computational optimization methods applied to sustainable 

building design. Nguyen et al. (2014) reviewed simulation-based optimization methods in 

building performance analysis. Machairas et al. (2014) took a different angle and reviewed 

the algorithms used in performance-based building design optimization. Attia et al. (2013) 

reviewed the gaps and needs for integrating building performance optimization tools in 

NZEB design. 

A current trend in EBD optimization is to reduce computational time using surrogate models 

(SM) to mimic time-costly transient simulation models. Carreras et al. (2016) apply an 

optimization of two objectives, to minimize cost and environmental impact of a building 

envelope using a SM (cubic spline interpolation) to reduce computational time. 

These SM may be classified based on their employed techniques: Radial basis function, 

Kriging (KR), support vector regression (SVR), artificial neural network (ANN), multivariate 

adaptive regression splines (MARS), and others. Bornatico et al. (2013) respectively apply 

Radial basis function surrogate modeling on a MOO to maximize solar yield and to minimize 

investments costs of a solar domestic hot water (SDHW) system. Kriging is a non-parametric 

technique, suitable for the identification of long term temporal and spatial trends (Zavala 



VM et. al, 2009). Furthermore, one of its special features is the ability to predict not only 

numerical values, but also uncertainty boundaries. Many authors use Kriging to predict 

building energy performance, as C.J. Hopfe et al. (2012), E. Tresidder et al. (2016), Van 

Gelder, L. et al. (2014) and P. Eguía et al. (2016). 

A different technique with similar applications is Support Vector Machines (SVM). The main 

advantage of SVM over ANN is related to the fact that the statistical learning process is cast 

as a convex optimization problem (Boyd SP et al., 2004). B. Eisenhower et al. (2012) uses 

SVM to perform a model-based MOO to minimize thermal discomfort (PMV) and annual 

energy consumption. 

ANN is a parametric technique that has the ability to learn complex patterns (Beccali et al., 

2004) and simulate non-linear systems (Karanachos A et al., 1998). Also, ANN is efficient in 

building studies (Magnier, L., & Haghighat, F., 2010). It is the dominant technique for 

building energy performance (Ascione et al., 2017). 

However, in the case of a time-consuming transient simulation model, KR has a far lower 

training time compared to ANN because less samples would be needed. Usually, in EDB 

literature, Multivariate Adaptive Regression Splines (MARS) are preferred to KR because of 

their simplicity and clear relationship between inputs and outputs (Van Gelder, L. et al. , 

2014). 

MARS is an adaptive non-parametric regression method (Friedman J. H., 1991). MARS has 

seen surprisingly little application in building-related studies to date (Cheng, M. Y., & Cao, M. 

T., 2014). Kusiak, A. et al. (2010) compares MARS to other SM in a model-based MOO 

problem, using a Particle swarm optimization (PSO) algorithm to minimize the energy 

consumption of a HVAC system. 

Sequential design strategies for SM have been studied in the context of deterministic 

computer experiments, to perform either prediction or optimization (Kleijnen, 2017). Cheng, 

M. Y., & Cao, M. T. (2014) used a hybrid technique, MARS and artificial bee colony in 

adaptive design of a SM to predict heating and cooling load of buildings. Ramallo-González 

et al. (2014) apply a Covariate Matrix Adaption Evolutionary Strategy (CMA-ES-SA) 

optimization, to minimize cooling and heating demands of a building. 

In the following sections, we present an EBD optimization methodology that has been 

developed to address issues that researchers and engineers are currently facing with the life 

cycle optimization of NZEBs. In order to reduce the required computational time, a Kriging 

model is trained to surrogate NZEB performance criteria during the optimization process. 

The error estimation of the Kriging model is used for an adaptive sequential design to 

improve the Kriging model accuracy. Α genetic algorithm (NSGA-II) is implemented to find 

the global optimal solutions. We also propose a new algorithm to reduce the calculation 

time even more. The new individuals of the adaptive sequential design are filtered with 

satisfaction functions (Cherif, 2008). It means that only the useful part of the Pareto front 

will be determined. Finally, we use network visualization for MCDA. We show that this 

approach is very powerful to help designers  find one solution in the case of multi-objective 



optimization. Moreover, the partitions can give useful information about the characteristics 

of the optimal solutions. 

2. Methodology 

The main idea behind the methodology is to perform multi-objective optimization in the 

smallest possible number of transient simulations, in order to decrease computational cost. 

As the SM needs to be calibrated, the methodology is based on an adaptive sequential 

design combining (figure 1):  

- Time consuming transient simulations (TRNSYS software) that feed a data base. The 

objective functions f(x,y) are calculated with the simulations results. The decision 

parameters are x and the other variables y.   

- The data base {x, f(x)} is used to calibrate the surrogate models.  

- Each surrogate model (Kriging model) calculates one objective function f*(x) with the 

decision parameters x as inputs.  

- Multi-objective optimization (NSGA-II) is performed with the surrogate model f*(x)  

The main challenge is to determine new points xnew in order to properly calibrate the 

surrogate model used to find optimal solutions. The aim is to reduce the error of the SM, 

particularly in the Pareto area. The new individuals can be chosen according to 4 strategies: 

- Strategy n°1: the maximal error in the whole research space (in the range of each 

decision parameter). The prediction error is an output of the kriging model. 

- Strategy n°2: the maximal error in the Pareto area only 

- Strategy n°3: hybrid strategy (first strategy n°1, then strategy n°2) 

- Strategy n°4: strategy n°3, with the maximal error in the Pareto area only, and a 

minimum level of satisfaction. The satisfaction functions are determined by the 

decision maker (Cherif, 2008). 

The stopping criterion for the adaptive design requires that no improvement in the Pareto 

front occurs. In the end, the satisfaction functions and the network visualization are used for 

decision making aid. In the following, the presented case study follows strategy n°1. 



 

Figure 1: Presentation of the methodology (with LHS: Latin Hypercube Sampling) 

3. Case study 

The results presented concern the strategy n°1 of the general methodology (figure 1). The 

kriging models for each performance function are developed with MATLAB. The optimization 

is also performed with MATLAB based on genetic algorithms (NSGA-II). Transient simulations 

are performed with the TRNSYS 17 software. The building is modeled using the TRNSYS type 

56 with respect to the envelope. The validation of the model was carried out by comparison 

with two other dynamic simulation tools.   

3.1. The building  

The case study concerns the design optimization of two buildings located in Chambéry 

(Savoie, France). The two residential buildings (34 apartments, see figure 2) have been 

modeled using three transient simulation software (TRNSYS, Pleaides-Comfie and Energy +). 

Each building is modeled under TRNSYS with only 2 zones (heated / unheated), because we 

first favored a fine modeling of the systems (heating and DHW) for the development of the 

methodology (Figure 1). The modeling of the systems has been carried out by the CEA-INES 

(Savoie). A multi-zone modeling under TRNSYS (one zone per dwelling and 2 zones for 

unheated volumes) was also carried out in parallel by LGCB (Vaulx-en-Velin, France); it will 

be tested later. Multi-zone modeling under Pleiades-Comfie was carried out (36 thermal 

zones) by the organization Armines (Ecole des Mines, Paris), but with a simplified approach 

for the systems. The same multi-zone modeling is developed under Energy+ by the company 

Albedo Energy (Savoie), but without any systems. 



 

Figure 2: The 2 residential buildings (FAURE Architect, Pleaides-Comfie modeling by 

Armines) 

The simulations show quite good agreement between the numerical tools (figure 3). The 

left-hand side figure shows the power rate change during the coldest week. The right-hand 

figure shows the average temperature during winter and the maximal temperature during 

summer. The temperature is a weighted value according to the areas of the heated zones (1 

apartment = 1 thermal zone), except for TRNSYS as we considered only 1 heated zone for 

each building.  

            

Figure 3: Comparison of simulations between TRNSYS / Energy + and Pleiades-Comfie 

(heating power on the left side and maximal temperature in summer on the right side) 

 

The three simulation tools obviously allow multi-zone modeling of the building. The choice 

of TRNSYS was made in view of the large library of models available for the systems. Indeed, 

the work of modeling systems is clearly the most time consuming, compared to the 

envelope. The Pleiades-Comfie software is particularly interesting for the ease of modeling 

the envelope and the possibility of coupling with the EQUER life-cycle analysis tool. It also 

offers NSGA-II optimization capabilities. Surrogate models are of lesser interest in the case 

of Pleaides-Comfie because it works with reduced envelope models and highly simplified 

models for systems (thermal regulation approach). Regarding Energy +, it is a very powerful 

tool for the envelope and it is widely used because there’s a free version. In contrast, the 

system model library is less developed compared with TRNSYS. This constitutes a major 

disadvantage for the optimization of a "high" number of system configurations. 

3.2. The climate  



We have used the climate change world weather file generator (CCWorldWeatherGen), 

which is available on web site : http://www.energy.soton.ac.uk/ccworldweathergen/ . Based 

on global grid of scenario A2 for 2020, 2050 and 2080, it transforms a « present day » 

weather file (figure 4). Morphing’ methodology for climate change transformation of 

weather data, was developed by SE Belcher (2005).  

 

 

Figure 4: The climate change scenarios 

We have used the A2 scenario. Tendencies on both irradiance and temperature are clearly 

to increase over the next years. Maximum temperature will rise of around 12 degrees. 

Irradiance also will rise, in a smaller rate. These climate changes will result a fall of 30% 

(6427 kWh/year) in heating demands from year 1995 to year 2050 (figure 5). It shows that it 

is necessary to consider the climate change for life cycle optimization. 

 



Figure 5: The heat demand (kWh) and internal temperature (max and mean) variations 

3.3. Building configurations 

Optimization has been carried out with the initial configuration of the two buildings 

(concrete, external insulation, collective gas boiler, solar hot water system, exhaust 

mechanical ventilation system). Other configurations can be considered for optimization. 

They concern heating / DHW systems and the envelope. In total, we have identified 64 

possible combinations of systems taking the specificities of the building and the geographical 

location into account: 

- Combined Solar Systems (SSC) with different auxiliary heating systems 

- Collective Solar Water Heaters (CESC) with different auxiliary heating systems  

- Boilers using different sources of energy: gas, electricity and wood. Systems using 

fuel oil as primary energy were not considered due to operating costs and excessive 

CO2 emissions. 

- Individual systems (one boiler per apartment) and collective systems (one boiler for 

the whole building) 

- Collective or individual thermodynamic water heaters 

- Heat network 

- Air-water and water-water heat pumps 

- Compact multifunction systems (ventilation with heat recovery, heat pumps, 

production of hot water, coupling with solar collectors…)  

Regarding the envelope alternatives, these are mainly: 

- type of insulation (exterior, interior, distributed) 

- the nature of the insulation (glass wool, mineral-wool, polyurethane, wood-wool, 

polystyrene) according to the nature of the wall (façade, roof ...) 

- the type of windows (double / single glazing, PVC ...), surfaces and orientations 

It is not possible to combine all of the system configurations with the envelope-related 

configurations. It is also clear that the modeling work associated with system variants is 

much more time-consuming than for the envelope. Once the geometry and the thermal 

zones have been modeled on a configuration, changing the insulation position for example is 

quite simple. The main difficulty is to automatically change the thermal bridges. Also, 

important work has been to limit the number of systems by defining levels of relevance. In 

the end, we selected 9 systems: 

- Collective gas boiler (with / without solar DHW) 

- Individual gas boilers (with / without solar DHW) 

- Water-to-water heat pump 

- Collective pellet boiler (with / without solar DHW) 

- Individual electric heating with solar DHW 

- Heat network   

 



4. Optimization hypotheses 

Since we do not develop new algorithms (NSGA-II genetic algorithms and kriging models are 

available under MATLAB), the main task is to implement the methodology (Figure 1), then 

define the objective functions and decision parameters. 

4.1. The objective functions  

We distinguished four main classes of performance: environment, cost, reliability and 

comfort. The life cycle of the building is considered for energy consumption and comfort 

taking climate change into account as we have already seen. Consumption is calculated only 

for several years, which makes it possible to evaluate the overall consumption after defining 

assumptions of energy retrofits. The life-cycle is also addressed in the life cycle cost (LCC), 

which is a very widespread approach to building optimization. Finally, we limited the 

performance criterion related to life cycle analysis to CO2 emissions (construction and 

energy consumption) for two reasons. The first is simply related to the importance of this 

criterion with respect to the greenhouse effect. The second reason concerns the 

interoperability difficulties between the selected LCA software (EQUER) and the TRNSYS 

simulation tool. Life cycle analysis can only be carried out a posteriori on some optimal 

solutions. We consider seven objective functions that can be evaluated using the satisfaction 

functions defined by the decision maker (Table 1). 

4.2. The decision parameters  

The decision parameters for the building envelope and the systems depend closely on the 

configurations. Each parameter has a min / max variation range. We consider only nine 

decision parameters (Table 2). 

Environment 

Primary energy consumption (Ep): boiler and electrical appliances (pumps, 

controller and fan) 

CO2 emissions over the lifetime (CO2): they depend on both the decision 

parameters (systems and envelope) and energy consumption 

Cost Life Cycle Cost (LCC) 

Durability 

Number of hours when the temperature in the solar collector exceeds a limit 

value (Tmax) 

Number of boiler operating cycles (Ncycle) 

Comfort 

Thermal comfort in summer (Tint) corresponding to a number of hours when 

the internal temperature exceeds a comfort temperature  

Compliance with the set temperature for hot water (Tecs) corresponding to 

a number of hours when the hot water temperature exceeds a temperature 

level 

Table 1: The objective functions 



Envelope 

Wall insulation (0,1-0,5 m) : 

- IA facade (mineral wool, k=0.038W.m-1.K-1)  

- IB ceiling below attic (mineral wool, k=0.038W.m-1.K-1)  

- IC roof terrace (polyurethane, k=0.024W.m-1.K-1)  

- ID ground floor (polystyrene, k=0.037W.m-1.K-1)  

Systems 

Collector area (S : 12-56m²) and slope (Slope : 20-50°)  

Storage volume (V : 1-4 m3) 

Boiler output rate (P : 70-250 kW) 

Heating system temperature (T : 35°-45°-60°C) 

Table 2: The decision parameters 

4.3. The satisfaction functions 

In the case of a two-objective Pareto front, figure 6 illustrates MCDA method with 

satisfaction functions. For each objective, the decision-maker first defines the shape of the 

corresponding satisfaction function (SEp or S€ in figure 6). The example below shows that 

there is no individual in the area corresponding to 100% satisfaction for both criteria. The 

first individual is obtained with a satisfaction of nearly 90%. 

 

Figure 6: Illustration of decision making aid with satisfaction functions 

Some individuals have zero satisfaction and are ultimately of no value to the decision-maker. 

Strategy n°4 presented in the general methodology (Figure 1) reduces the "useful" area of 

the Pareto front by requiring a minimum level of satisfaction for the new points. The 



advantage is to accelerate the convergence by limiting the scope of the optimal solutions to 

a useful area for the decision-maker. 

On the case study of the two buildings, a sigmoid-type satisfaction function was considered 

for each of the seven performance functions: Ep (primary energy), CO2 (emissions), LCC (Life 

Cycle Cost), Ncycle (boiler durability), Tmax (solar system durability), Tint (summer comfort) 

and Tecs (water temperature). By way of example, figure 7 shows the satisfaction function in 

the case of the primary energy consumption for the optimal solutions (Pareto front). With a 

sigmoid type function, the curve can be determined with two points. We have decided that 

the decision maker gives the values of the function for the satisfactions levels 0.5 and 0.9. 

Concerning energy consumption Ep, the satisfactions SEP are respectively 0.5 and 0.9 for 

60kWh/m² and 40kWh/m². In these conditions, we can easily show that: 
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Figure 7: Example of satisfaction function defined by the decision maker in the case of 

optimal solutions (primary energy consumption) 

We also considered a global satisfaction Sg(j) for each individual j, by calculating a weighted 

(AHP, Analytical Hierarchy Process) average of the seven satisfaction functions kS . This 

overall satisfaction of an individual also considers that a solution with a high standard 

deviation ( )kSσ between the satisfaction functions must be penalized. It means that the 

average satisfaction kS
 

will be reduced according to the standard deviation level. A second 

term is also considered in the global satisfaction. For each individual j, the overall 

satisfaction is thus calculated by the relation: 

( ) ( ) ( ) jkjk SSjSg σα ⋅−=  

With  α : a fixed parameter penalizing the dispersion of the satisfactions Sk for each 

individual j (α=-0.2 in our study)  



k = 1…7: the objective functions 

The shape of the satisfaction function (figure 7) will also influence primarily the strategy n°4. 

The decision maker will have to carefully determine the minimum level of satisfaction which 

is required. Secondly, the overall satisfaction depends on each satisfaction function. The 

shape of each curve will thus have to be carefully determined.  

Regarding the AHP method, we first considered four main classes (Environment / Cost / 

Durability / Comfort) shown in table 1. The decision maker has to fill in a half matrix that 

determines the importance of one performance compared to another one. The AHP 

methods can then calculate the weights for each main class. The weight for each function is 

calculated according to the number of these functions (table 3). 

Main classes Weighting (main classes) Weighting (functions) 

Environment 0.30 Ep : 0.15      CO2 : 0.15 

Cost 0.51 LCC : 0.51   

Durability 0.10 Tmax : 0.05  Ncycle : 0.05   

Comfort 0.09 Tint : 0.045  Tecs : 0.045   

Table 3: The values of the weights  

 

4.4. Results for strategy n° 1 

The Pareto front consists of 62 individuals. These optimal solutions can be classified 

according to the overall satisfaction defined above. Solution 2 appears as the most efficient 

solution. 

 

Figure 8: The satisfaction functions (0-1) for all the optimal solutions     

The previous strategy of globalizing satisfaction obviously simplifies the problem by 

transforming a multi-criterion optimization into a single criterion. If it is desired to keep the 



seven satisfaction functions for the decision maker choice, it is very difficult to interpret 

conventional graphical representations of the heat map, matrix scatter plot or radar type. An 

original way we propose is to use the network visualization, with the Gephi software 

(algorithm: ForceAtlas 2). Each link between the node of a solution and the node of a 

criterion corresponds to the satisfaction level of the solution (an individual) for this criterion. 

The closer the node "individual" is to the node "criterion", the better is the satisfaction level 

of the individual for this criterion. We have also considered that the diameter of the node of 

an individual defines the overall satisfaction level. However, the diameters of the nodes 

representing the criteria are constant. As shown in figure 9, individual n°2 has the largest 

diameter and therefore the best overall performance. It is quite close to all the nodes 

representing the performance functions, excluding the performance related to the comfort 

(Tint). The automatic partition achieved by the Gephi software reveals three large classes (3 

different colors) in a very logical way. The criteria LCC, Ep and CO2 belong to the same 

classification. These three quantities are closely related in the case of the building under 

consideration, which does not have photovoltaic production (it is not a NZEB building). The 

second and third classifications concern respectively the two functions related to durability 

(Tmax and Ncycle), and the two functions related to comfort (Tecs and Tint). 

 

Figure 9: Links between the 62 individuals of the Pareto front and the performance criteria    

(a short distance between a node "individual" and a node "criterion" means that the level of 

satisfaction is high) 

Another possible representation is to connect the nodes of the optimal solutions with the 

nodes of the associated values for each decision parameter. We divided the variation range 



shown in Table 2 into three for each of the nine decision parameters (+ / ++ / +++). In figure 

10, it is easy to see that the best solutions are related to:  

- A large storage volume (V+++)  

- A large thermal solar collector area (S+++ ) 

- A large slope of collector area (slope+++), corresponding to a range 40-50°  

- High insulation resistance for the envelope  (IA+++ , IB+++ , IC+++), excluding the ground 

floor (ID++) which should not be very insulated for cost issue   

- A low heating system temperature (T+), which will reduce heat losses 

- A non-oversized boiler output (P+) 

 

Figure 10: - The nodes of the 62 optimal solutions, linked to the corresponding values of the 

decision parameters (variation range divided into 3 partitions: + / ++ /+++) 

If we compare solutions 1 and 2 (Figure 11), the difference in decision parameters is only 

related to the insulation thickness at the ground floor (ID ++ for solution n°2 and ID +++ for 

solution n°1). A lower thickness for the ground floor results in a lower investment cost and 

therefore a better LCC for the solution n°2. Figure 11 thus shows that the distance between 

the criterion LCC and the node of the solution n°2 is lower than that of the LCC and the node 

n°1. Therefore the overall satisfaction of solution 2 is better. 



 

Figure 11: comparison of the solutions 1 and 2 

Through this example, we can see that network modeling offers a new MCDA method. It is 

particularly powerful when the number of decision parameters and optimal solutions is high. 

 

5. Conclusion 

The study was carried out on two buildings for a total of 34 apartments. The TRNSYS / 

Energy + and Pleiades-Comfie tools were used for the validation of numerical models. We 

have developed optimization strategy n°1 based on the identification of kriging models with 

the maximum error observed on the SM. We plan to compare the four strategies using the 

TRNSYS software in a multi-zone configuration, also integrating a visual comfort criterion. In 

addition, we will optimize the other envelope configurations and systems presented. This 

work will be developed in the CADES generic tool (G2ELAB, VESTA SYSTEM), which is based 

on the use of software components for the design and optimization of multi-physical 

systems. It will integrate the four strategies of the general methodology and will allow using 

different dynamic simulation tools (TRNSYS, Energy + ...). The considered SM will be of the 

kriging type. The results of this work will be available by the summer of 2018 within the 

framework of the INTENSE project. They will make it possible to compare the reduction of 

the calculation times obtained by the four strategies. 

The notion of satisfaction function is a decision support tool that can be used to reduce 

computation time by reducing the optimal solutions area (solutions deemed unnecessary by 

the decision maker are discarded), and to choose the optimal solution (MCDA). We have 

shown with the case study that the graphical visualization of networks is a very relevant tool 

for decision-making. Even if the representation in a 2D plane of the network simplifies the 

problem very much, we have seen that the graphical exploitation is quite coherent. 

Kriging models have the advantage of offering an estimate of the prediction error outside 

the individuals used for identification. This information is very useful when it comes to 

improving the meta-model (strategy n°1). On the other hand, they remain applicable for a 



limited number of inputs (about ten decision parameters). Under these conditions, other 

types of meta-models (MARS, neural networks, etc.) should be considered. 

The reduction of computational times with meta-models can also be improved by 

performing parallel calculations. It is sufficient to define several new individuals in each loop 

rather than just one (Figure 1). Interoperability between software is an important issue that 

we have observed in the case of LCA, which requires a complex coupling with the dynamic 

simulation tool: parameters related to the composition of the building and exploitation of 

simulation results. Life cycle methodologies develop naturally because the reduction in 

annual consumption has highlighted the need to consider the embodied energy associated 

with construction. At the same time, taking climate change into account seems to be 

essential at the level of the life of new buildings. Under these conditions, the life-cycle 

should be taken into account when optimizing the design of NZEBs. A new challenge is clear 

in this context: taking into account uncertainties. It is obvious that optimization must 

become "robust" to overcome the uncertainties associated with the energy price evolution, 

climate change... Robust optimization requires additional simulations that accentuate the 

computation times and thus the interest of meta-models. It is therefore likely that the 

building sector is moving towards complex robust optimization methodologies that are 

multi-criteria, multidisciplinary, and using meta-models identified with suitable adaptive 

design of experiments. 
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