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MEAN REFLECTED STOCHASTIC DIFFERENTIAL EQUATIONS WITH
JUMPS

PHILIPPE BRIAND, ABIR GHANNOUM, AND CELINE LABART

ABSTRACT. In this paper, a reflected Stochastic Differential Equation with jumps is studied for
the case where the constraint acts on the law of the solution rather than on its paths. These
reflected SDEs have been approximated in [BCARGL16| using a numerical scheme based on
partical systems, when no jumps occur. The main contribution of this paper is to prove the
existence and the uniqueness of the solutions to this kind of reflected SDEs with jumps and to
generalize the results obtained in [BCdRGL16] to this context.

1. INTRODUCTION

Reflected stochastic differential equations have been introduced in the pionneering work of
Skorokhod (see [Sko61]), and their numerical approximations by Euler schemes have been widely
studied (see [Slo94], [Slo01], [Lep95], [Pet95], [Pet97]). Reflected stochastic differential equations
driven by a Lévy process have also been studied in the literature (see [MR&5], [KH92]). More
recently, reflected backward stochastic differential equations with jumps have been introduced
and studied (see [HO03|, [EHOO05|, [HH06], [Ess08], [CMO0§], [QS14]), as well as their numerical
approximation (see [DL16a| and [DL16b]). The main particularity of our work comes from the
fact that the constraint acts on the law of the process X rather than on its paths. The study
of such equations is linked to the mean field games theory, which has been introduced by Lasry
and Lions (see |[LLO07a|, [LLO7b], [LLO6b]|, [LLO6a|) and whose probabilistic point of view is
studied in [CD18a] and [CD18b|. Stochastic differential equations with mean reflection have
been introduced by Briand, Elie and Hu in their backward forms in [BEH18|. In that work, they
show that mean reflected stochastic processes exist and are uniquely defined by the associated
system of equations of the following form:

t t
X, = X, +/ b(Xs)der/ o(X)dBs + Ky, 30,
0 0
t (1.1)
E[h(X,)] > 0, / E[h(X,)]dKs = 0, t> 0.
0

Due to the fact that the reflection process K depends on the law of the position, the authors of
[BCARGL16], inspired by mean field games, study the convergence of a numerical scheme based
on particle systems to compute numerically solutions to (1.1).

In this paper, we extend previous results to the case of jumps, i.e. we study existence and
uniqueness of solutions to the following mean reflected stochastic differential equation (MR-SDE
in the sequel)

Date: 19th December, 2019.
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t t t
Xt:XoJr/ b(XS_)ds+/ U(XS_)dBS+/ /F(XS_,Z)N(ds,dz)+Kt, t>0,
0 0 0 JE

E[h(X})] > 0, /OtIE[h(XS)] dK, =0, t>0,

(1.2)
where E = R*, N is a compensated Poisson measure N(ds,dz) = N(ds,dz) — A(dz)ds, and
B is a Brownian process independent of V. We also propose a numerical scheme based on a
particle system to compute numerically solutions to (1.2) and study the rate of convergence of
this scheme.

Our main motivation for studying (1.2) comes from financial problems submitted to risk
measure constraints. Given any position X, its risk measure p(X) can be seen as the amount of
own fund needed by the investor to hold the position. For example, we can consider the following
risk measure: p(X) = inf{m : Elu(m + X)] > p} where u is a utility function (concave and
increasing) and p is a given threshold (we refer the reader to [ADEH99| and to [FS02| for more
details on risk measures). Suppose that we are given a portfolio X of assets whose dynamic,
when there is no constraint, follows the jump diffusion model

dXt:b(Xt)dt+a(Xt)dBt+/ F(X;_,z)N(dt,dz), t>0.
E

Given a risk measure p, one can ask that X; remains an acceptable position at each time ¢t. The
constraint rewrites E [h(X;)] > 0 for ¢ > 0 where h = u — p.

In order to satisfy this constraint, the agent has to add some cash in the portfolio through the
time and the dynamic of the wealth of the portfolio becomes

dX; = b(X,)dt + o(X;)dB; +/ F(X;_,2z)N(dt,dz) +dK;,  t>0,
E

where K; is the amount of cash added up to time ¢ in the portfolio to balance the "risk" associated
to X;. Of course, the agent wants to cover the risk in a minimal way, adding cash only when
needed: this leads to the Skorokhod condition E[h(X;)]dK; = 0. Putting together all conditions,
we end up with a dynamic of the form (1.2) for the portfolio.

The paper is organized as follows. In Section 2, we show that, under Lipschitz assumptions on
b, 0 and F' and bi-Lipchitz assumptions on h, the system admits a unique strong solution, i.e.
there exists a unique pair of process (X, K) satisfying system (1.2) almost surely, the process K
being an increasing and deterministic process. Then, we show that, by adding some regularity on
the function h, the Stieltjes measure dK is absolutely continuous with respect to the Lebesgue
measure and we obtain the explicit expression of its density. In Section 3 we show that the
system (1.2) can be seen as the limit of an interacting particle system with oblique reflection of
mean field type. This result allows to define in Section 4 an algorithm based on this interacting
particle system together with a classical Euler scheme which gives a strong approximation of
the solution of (1.2). When h is bi-Lipschitz, this leads to an approximation error in L2-sense

proportional to n~! + Nfé, where n is the number of points of the discretization grid and N
is the number of particles. When A is smooth, we get an approximation error proportional to
n~! 4+ N~!. By the way, we improve the speed of convergence obtained in [BCARGL16]. Finally,
we illustrate these results numerically in Section 5.
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2. EXISTENCE, UNIQUENESS AND PROPERTIES OF THE SOLUTION.

In this paper, (2, F,P) is a complete probability space endowed with a standard Brownian
motion B = {B:}o<i<7. {Ft}o<i<r is the usual augmented filtration of B. Before moving on,
we give the following assumptions needed in the sequel.

Assumption (A.1).
(i) Lipschitz assumption: there exists a constant Cp, > 0, such that for all x,2’ € R and p > 0,
we have

b(z) = b(a")[" + |o(z) — o ()P + /E |F(x,2) = F(2', 2)[PA(dz) < Cplz — '[P,

(ii) The random variable Xg is square integrable independent of By and Ny.

Assumption (A.2).
(i) The function h : R — R is increasing and bi-Lipschitz: there exist 0 < m < M such that

Vo € R, Vy €R, mlz —y| < |h(z) — h(y)| < M|z —yl.
(i) The initial condition X satisfies: E[h(Xp)] > 0.
Assumption (A.3). 3 p >4 such that Xy € LP i.e. E[|X(|P] < oco.

Assumption (A.4). The function h is twice continuously differentiable with bounded derivatives.

2.1. Preliminary results. Consider the function
H RxPi(R)> (z,v)— /h(m + 2)v(dz), (2.1)

where P1(R) is the set of probability measures with a finite first-order moment.
Let G be the inverse function in space of H evaluated at 0:

Go :Pi(R)>vwinf{z € R: H(z,v) > 0}, (2.2)
and Gy is the positive part of Gy:
Go :PiR)s>veinf{x >0: H(z,v)>0}. (2.3)

We start by studying some properties of H and Gy.
Lemma 1. Under Assumption (A.2), we have:

(i) For all v in Py (R), the function H(-,v): R > x — H(x,v) is bi-Lipschitz:
Vm,yER,m]w—y[§|H(x,y)—H(y,V)|§M\x—y\ (24)

(i)  For all z in R, the function H(z, ) : P1(R) > v — H(z,v) salisfies the following
Lipschitz inequality:

v,V € P1(R), |H(z,v) — H(z,V)| < ‘/h(m + ) (dv — dv')|. (2.5)

Proof. Lemma 1 ensues from the definition of H (see (2.1)). O
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Let v and v/ be two probability measures. The Wasserstein-1 distance between v and v/ is
defined by:
/ o(dv —dv')

Y, € Pi(R), |H(z,v)— H(z,V)| < MWy(v,V/). (2.6)
According to Monge-Kantorovitch Theorem, the assertion (2.5) implies that for all = in R, the
function H(z,-) is Lipschitz continuous w.r.t. the Wasserstein-1 distance. Then, the regularity
of Gy is given in the following Lemma:

Wi(v,v') = sup
@ 1—Lipschitz

—  if  E[X-Y|.
X~v ; Y/

Thus

Lemma 2. Under Assumption (A.2), the function Gy : P1(R) > v — Go(v) is Lipschitz contin-
uous:

Go(v) — Go()| < ‘/ (Go(v) + )(dv — a))|, (2.7)

where Go(v) is the inverse of H(-,v) at point 0. Especially,
Golv) = Golv)] < Wi (w,), (28)
Proof. The proof is given in (|[BCARGL16|, Lemma 2.5). O

2.2. Existence and uniqueness of the solution of (1.2). The set of Assumptions (A.1)-(A.4)
will be used as follows:

e The existence and uniqueness results are stated under the standard assumption for SDEs
(A.1) and the assumption used in [BEH18| (A.2).

e The convergence of particle systems is proved under (A.3).

e Some of the results will be improved under the smoothness assumption (A.4).

Firstly, we recall the existence and uniqueness result of [BEH18| in the case of SDEs.

Definition 1. A couple of processes (X, K) is said to be a flat deterministic solution to (1.2)
if (X,K) satisfy (1.2) with K being a non-decreasing continuous deterministic function with

Ky =0.

Given this definition we have the following result.

Theorem 1. Under Assumptions (A.1) and (A.2), the mean reflected SDE (1.2) has a unique
deterministic flat solution (X, K). Moreover,

Vt >0, K; =supinf{z > 0: E[h(z + Us)] > 0} = sup Go(us), (2.9)
s<t s<t

where (Uy)o<t<T 15 the process defined by:

Ut:X0+/0tb( )ds+/ _)dB, +/ /F N(ds, dz) (2.10)

and (pt)o<t<t 15 the family of marginal laws of (Ut)o<t<t-
Proof. We refer to [BEH18], for the proof in the case of continuous backward SDEs. We present
here the proof of the forward case with jumps.

Let us consider the set C* = {X F-adapted cadlag, E(sup,<p |X;|?) < oo}, and let X €C?be
a given process. We define

t
Ut:Xo—l—/ b(X, )ds+/ -)dBs —|—// X, 2)N(ds,dz),
0
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and the function K

K, =supinf{z > 0 : E[h(z + Uy)] > 0} = sup Go(jis). (2.11)
s<t s<t

Let us introduce the process X:

t
Xt:X0+/ b( )d5+/ dB —|—// 8—,2 dS dZ)+Kt,
0

where K is given by (2.11), and check that (X, K) is the solution to (1.2) with U replaced by
U. First, based on the definition of K, we have E[h(X:)] > 0, K; = Go(jit) dK; — a.e. and
Go(fit) > 0 dK; — a.e.. Then, we obtain

/ K, = / WO+ K ), = / RO+ Go(is) I, = /OtE[h(US+Go<ﬂs)>]1co<as>>osz.

Moreover, since h is continuous, we have E[h(Us + Go(jis))] = 0 as soon as Go(fis) > 0, so that

/tE[h(XS)]dKS 0.

Second, choose the map ® : C2 —» €2 which associates to X the process X, solution to (1.2).
Let us prove that ® is a contraction. Using the same Brownian motion and Poisson process, we
consider X and X’ € C? and K and K’ defined by (2.11). From Assumption (A.1), and by using
Cauchy-Schwartz and Doob inequality, we get

2

<b(X )= b(X) >ds

o5

< F(X!_, ))N(ds,dz) + K, — sz}]
{ {fL‘?t/ o) - K- )’2“]%[?35 /ot <o<X5>—a<X;>>st
//( F(X-, ))N(ds,dz)

< C{TIE[/O (%)~ (X)) ds} +E[/OT\J(XS) —a(X;)\st]

T R . 2
+/ / E UF(XS,Z) - F(X;,,z)‘ })\(dz)ds + sup |K; — K;P}
0 E t<T

< C{TZClE[sup | X, — Xt’, \2] +TCLE [sup | X, — Xt’, \2]
t<T

E[sup | X — X£|2] < 4E[sup {
t<T t<T

|

+E [sup
t<T

2
} + sup | K; — K£]2}
t<T

t<T

—i—TCﬂE{sup|Xt— - \2] —|—sup\Kt K{\Q}
t<T

< C<T201 + TC’g)IE[sup | X; — X;\Q] + Csup |K; — K[
t<T t<T

From the representation (2.11) of the process K and Lemma 2, we have that
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M ~ N
sup |Kt — K£‘2 S E|:Sllp |Ut — Ut/’2:|
t<T m t<T
< C(T?*Cy + TCH)E [sup X, - KZIQ] :
t<T
This leads to

E[sup | Xt — X£|2] <C(1+T)TE [sup | X; — Xﬂ .
t<T t<T

Therefore, there exists a positive T, depending on b, o, F' and h only, such that for all T' < T,
the map @ is a contraction. Consequently, we get the existence and uniqueness of solution on
[0, 7] and by iterating the construction the result is extended on R™. O

2.3. Regularity results on K, X and U.

Remark 1. In view of this construction, we derive that for all 0 < s < t:
<B% _'I{Q

zss;l;inf {ZEZO:E[ <x+X +/ b(X du+/ ~)dBy, // N(du dz))] 20}.

Proof. From the representation (2.9) of the process K, we have

K — sup Go(Uy) — masx { sup Go(U), sup G0<Ur>}

r<t r<s s<r<t

= max {Ks, sup GO(UT)}

s<r<t

= max {KS, sup Go(Xs — Ks+ U, — Us)}

s<r<t

:max{Ks, sup {GO(X — Ks+ U, —Us) }

s<r<t }
By the definition of G, we observe that for all y € R, Go(X +y) = Go(X
Kt:maX{KS, sup [(KS+G0(XS+UT—U > }}

s<r<t

— Y, SO we get

:Ks—i—max{o, sup [(KS—FGO(XS—FUT Us)) —KS]}.

s<r<t

Note that sup, (f(r)") = (sup, f(r))" = max(0,sup, f(r)) for all function f, and obviously

+ +
Ki = Ks+ sup H(KSJFC?O(XSJFUT—US)) —KS} ]

s<r<t

= K, + sup Kéo(Xs +U, — Us)> +]

s<r<t

= Ky + sup Go(Xs+ U, —Us),

s<r<t

and so
K — Ky = sup Go(Xs+ U, — Us).

s<r<t
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Proposition 1. Suppose that Assumptions (A.1) and (A.2) hold. Then, for all p > 2, there
exists a positive constant K, depending on T, b, o, F' and h such that

(1) E[supyerp |XifP] < K (1 +E[|Xo[?]).
(i) VO< s <t <T, E[sup,c,c;|Xul?|Fs] < C(1+|XsP).

Remark 2. Under the same conditions, we conclude that

E[sup [UP] < K, (1 +E[|Xo["]).
t<T

Proof of (i). We have

t p
{Sup|Xt\p] < 5P 1{]E|X0|f"—i—IEsup</ |b(X \ds) + Esup /O’(XS)st
t<T t<T | Jo
p
+ Esup // Xy, 2)N ds dz)| + KL b
t<T

The last term K7 = sup,<p Go(pe) is firstly studied. By using the Lipschitz property of Lemma
2 of GGy and the definition of the Wasserstein metric, we have

M
vt 20, [Go(pe)| < ——E[|U — Vo],

since Go(po) = 0 as E[h(X0)] > 0 and where U is defined by (4.3). Therefore

t
\KT\p—\squo(ut)\p<3p 1( > {Esup(/ |b(X |ds> + E sup /U(Xs)st
0

t<T t<T

P
//F 5= 2) ds ,dz)| e,

and so

t p
E[sup | X,/7] sc<p,M,m>E[|Xo|P+sup< [ s ) s
0

t<T t<T
/ [ P 2N s ) p].

Hence, using Assumption (A.1), Cauchy-Schwartz, Doob and BDG inequalities yields

p

+ Esup
t<T

p

/ (X, )dB,

-+ sup
t<T

D

E[% thyp] < C{E[\Xo\p} +THEUOT(1+ |Xs])pds} +C’1E[/OT(1+ \Xs\)%zs] ’

4 CQIE[/OT(I + sty)pds]}

T
< <1 —|—E|X0|p> + 02/ E[sup ]Xt|p] dr,
0

t<r

and from Gronwall’s Lemma, we can conclude that for all p > 2, there exists a positive constant
K,, depending on T', b, o, F' and h such that

E[sup | X:["] < K,(1+E[|Xo["]).
t<T
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Proof of (ii). For the first part, we have
Xu=U,+ K,
=X+ (U, —Ug) + (Ky — Ky)

:XS+/ b(Xr)dr—F/ o(X,-)dB, +/ /F N(dr, dz)

+ (Ky — Ky).
Let us denote Eg[-| = E[- | Fs]. Then we get

U p u P
]ES[ sup |Xu]”} < 51’—1{15:5 [yxsv’] +IE5[ sup / b(X,-)dr ]+IES[ sup / o(X,-)dB, ]
s<u<t s<u<t s s<u<t s
p
[bup //F drdz :|+‘Kth
s<u<t
t p t p
<C |Xs|p+Tp_1/ Es[b(Xr_) ]dr+/ E3|:O'(Xr—) ]dr

,2)

+/:/EIES[F(X p}

t
< C(T){|X8|p+01/ E, [1+ ]XT_|p]dr+2‘KT

p} A(dz)dr + Q'KT

)

Finally, from Gronwall’s Lemma, we deduce that for all 0 < s < ¢t < T, there exists a constant
C, depending on p, T', b, o, F' and h such that

E[ sup |Xu]p\.7:5] < C’(1+ \X5|p).

s<u<t

t
< Cl(l + ’Xs‘p) + C2/ Es[ sup ‘Xu* |p]dT

s<u<r

O

Proposition 2. Let p > 2 and let Assumptions (A.1), (A.2) and (A.3) hold. There exists a
constant C depending on p, T, b, o, F and h such that

() V0<s<t<T, |K;—K,|<COlt—s|/?.
(i) VO<s<t<T, E[U-UlP] <Clt—s|
(i) VO<r<s<t<T, E[|Us—UlP|U—UsP] <Clt—r|*

Remark 3. Under the same conditions, we conclude that

VO<s<t<T, E[Xi—X;]<Clt—s|

Proof of (i). Let us recall that, for all process X,
Go(X) = inf{z € R: E[h(x + X)] > 0},
Go(X) = (Go(X))" =inf{z > 0: E[h(z + X)] > 0}.

From Remark 1, we have
K;— Ks = sup Go(Xs + U, —Us). (2.12)

s<r<t
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Hence, from the previous representation of K; — K, we deduce the f—Holder property of the
function ¢ — K. Indeed, since by definition Go(Xs) = 0, if s < ¢, by using Lemma 2,

|K; — Ks| = sup Go(Xs + U, — Us)

s<r<t

= sup [Go(Xs + U, — Us) — Go(X5)]
s<r<t

M
= — sup E[|U, — Usl],

s / (X, )du ] 4 <E Ls;%

# (2] | [ PO ¥ an o
gc{ /tIEHb( )Hdu+ (IEU: o(Xu-)
< [ (dz)dqu}

1/2
< C{t —s|E [1 + sup Xu@ + |t — s|V/? <IE [1 + sup |Xu]2}> }
u<T u<T

Therefore, if Xy € L? for some p > 2, it follows from Proposition 1 that
|K; — K| < C|t —s|'/2.

and so

0"

[ ot yaz,

0"
et

|K: — K| < C{E[ sup

Proof of (ii).

e
| ot
S%wﬁKﬁb W)*
[ s amne]
< C{|t—s|”_1E[/St(l—|— |Xu_|)pdu] +01E[</:(1+ |Xu_|)2du>p/2}

4 CgIE[/:(l + \Xu_|)pdu} }

p/2
<CiE [1 + sup ]Xt]p] [t — s|P + C3E [(1 + sup Xt]2> ] It — s|P/?
t<T t<T

p

/8 " (X, )dB.

+ C5E [1 + sup |Xt|p] [t — s].
t<T
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Finally, if Xy € LP for some p > 2, we conclude that there exists a constant C', depending on
p, T, b, o, F and h such that

VO<s<t<T, E[X;—X]]<Clt—s|.

Proof of (iii). Let 0 <r < s <t <T, we have

E |U5—UT]p|Ut—US\p} SE[|US—UT\pES[|Ut—US|p]]

|Us - Ur’p{Es |:

/: /EF(Xs—,z)dN(ds,dz)

p] }]
Then, from Burkholder-Davis-Gundy inequality, we get

t P t
U, = U, P ES[ / b(X, )ds }+ (EU
t P
—I-Es[/ / )\(dz)ds]
s JE
|Us — UT]p{hf —s? (l —I—ES{ sup |Xu|p]>
s<u<t
p/2
—|—|t—s]p/2<1+IEs[ sup \Xu|2] )—Ht—s(l —I—ES{ sup |Xu|p]>
s<u<t s<u<t

|Us — UT]p{hf - s](l —HES[ sup |Xu|p]> }] ,
s<u<t

thus, from (i) and Proposition 1, we obtain

<CE

+E|

o(Xs-)

2 p/2
ds} )

E||Us — U, P|U; — Us\p} < CE

F(X,-,2)

<CE

<CE

E |U5—Urp|Ut—US\p} < Cylt — S|E||Us — UpJP| + Colt — s|E||U, — U P| X, [P

< Oyt —s||s —r| 4+ Colt — s|E

‘Us - Ur’p<’Xs - XT’p + ’Xr|p>]

< let — 7”|2 + Cg‘t — S|E

21U, — UTP’(]US - U P+ |Ks — Kr|p>]

+ Cs|t — s|E||Us — Uy [P| X, [P
< Ci|t — | + Cylt — s|E||Us — U |?| + Cs|t — s||s — r|P/*E||U, — U,|P
+ Cult — s|E||Us — U, [P| X, [P

< Ot — > + Cylt — s|E [XTIPETHUS — U, 7]
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Following the proof of (ii), we can also get

E.[|Us — U, |P] < Cls —r| (1 + ET[ sup ]Xu\p})

r<u<s

X (1| sup XUVJD]
r<u<s

< Cht — r|2 + Colt — T|2]E [|Xr|p<1 + sup |Xu|p)] .

r<u<s

Then

E\||Us — U |P|U; — UsP| < Ci|t — 72 + Colt — s||s — r[E

Under (A.3), we conclude that
E[|Us — U JP|U; = UJP) < Clt =72, VO<r<s<t<T.

O
2.4. Density of K. Consider £ the linear partial operator of second order described by
0 1
£11) = o) o) + 00" ) 2 ) + (£ F.2) = £0) = Pl @) ) A,
(2.13)

for any twice continuously differentiable function f.

Proposition 3. Assume (A.1), (A.2) and (A.4). Let (X,K) be the unique deterministic flat
solution to (1.2). Then the process K is Lipschitz continuous and the Stieljes measure dK has
the following density

(E[Lh(X,-)])~

E:RT>t+—s —}E[h’(Xt_)]

Lg(n(xy)=0- (2.14)

Let us admit for the moment the following result that will be useful for our proof.
Lemma 3. The functions t — E [h(X;)] and t — E [Lh(X})] are continuous.
Lemma 4. If ¢ is a continuous function such that, for some C' >0 and p > 1,

Ve e R, |p(z)| < C(1+ |zP),
then the function t — E[p(Xy)] is continuous.

The proof of Lemma 4 is given in Appendix A.1. We may now proceed to the proof of
Proposition 3.

Proof. Firstly, we prove that K is Lipschitz continuous. In order to do it, we first prove that s —
Go(pus) is Lipschitz continuous on [0,7]. From the definition of Gg, we have H(Go(uz), pt) = 0
and by using (2.4), if s < ¢, we get

1Go(ps) — Golue)| < %\H(Go(us)wt) — H(Go(pue), pt)]

= %‘H(GO(MS)?/%)L

- %\E[h(@o(us) +Uh)]]

= Llefn(Got + v+ [0+ [Cotxgam+ [ [ Fo6 Nna) ||
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From It6’s formula, we obtain

t t
h(Go(ps) + Up) = h(Go(ps) + Us) +/ b(X,- )W (Gops) + U,- r+/ o(X,-)h' (Go(ps) + U,-)dB,

\V)

1 t
// X h' Gous )+ U,- ) (dr,dz) —I—/o h” Go(,us)—l-U )d

//mrz dzdr—l—//mrz (dr,dz),

with
m(Ta Z) = (h(GO(NS) + Ur* + F(Xr*)z)) - h(GO(Ns) + Ur*) - F(Xr*7z)h/(c_;0(,us) + Ur)) :
This yields

W(Golps) + Us) = h(Golps) + Us / Lx_ h(Goljss) + Uy )dr + / o (X, ) (Goljus) + Uy-)dB,

//( (Golps) + Uy +F(X7"’Z))_h(GO(Ms)‘FUT))N(dr,dz),

where

_ 9 1 9* /

£u1(0) = W) g @) + 500" )y @)+ [ (Fle 4 F2) = 1) o) (@) ) la).
Therefore,

{1 (Golps) + U1)) = EIR(Golps) + Ua)) + [ BLLx _h(Golps) + U,
t
= H(Golw). o) + [ EILx,_h(Galiw) + U, Ydr

_ / "E[Lx_ h(Golys) + Uy )ldr.

Consequently, the result immediately follows from the fact that kA has bounded derivatives and
sup,<r | Xs| is a square integrable random variable for each 7' > 0 (see Proposition 1).

Finally, we deduce that K is Lipschitz continuous and so has a bounded density on [0, 7] for
each T' > 0 (see Proposition 2.7 in [BCARGL16] for more details).

Secondly, let us find the density of the measure dK. For all 0 < s <t < T, we have

Xt:X5+/: <b(Xr)—/EF(X,,,z)A(dz))dr+/ )dB, +/ /F N(dr,dz)

+ K — K.
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Under (A.4) and thanks to Itd’s formula we get

h(X;) — h(X,) :/:b(Xr)h’(Xr)dr+/:a(X VW (X,-)dB, +/ / _,2)W (X,-)N(dr, dz)

/t W (X,-)dK, +;/t02(XT)h”(XT)dr

/ / ( (X, + F(X,—,2)) —h(XT)—F(Xr,z)h’(XT)>N(dr,dz)
:/S b(XT)h’(XT)drnL/:a(X VW (X,-)dB, +/ / _,2)W (X,-)N(dr,dz)
/t W (X,-)dK, +;/:02(XT)h”(XT)dr
//( (Xp- + F(X,- ))—h(Xr)—F(Xr)h’(Xr))/\(dz)dr
/ / ( (X,- + F(X,-,2)) —h(XT)—F(Xr,z)h’(Xr)>J\7(dr,dz)
/ Lh(X,-)dr + / W (X, )dK, + / ta(Xr)h’(Xr)dB,n

//( (X + F(X,- ))—h(XT)>J\7(dr,dz),

where £ is given by (2.13). Thus, we obtain

IE( / h’(XT_)dKT> — ER(X;) — ER(X,) — / tIEEh(XT_)dr. (2.15)

As a conclusion, using (2.15), Lemma 3 and the proof of Proposition 2.7 in [BCARGL16|, we
deduce that the measure dK has the following density

(E[LA(X-)])~

ki = E[h’(th )] lE[h(Xt)]ZO'

O
Proof of Lemma 3. Under Assumption (A.2), and by using Lemma 4, we obtain the continuity

of the function ¢ — Eh(X}).

Under the assumptions (A.1), (A.2) and (A.4), we observe that © — Lh(X}) is a continuous
function such that, for all € R, there exist constants Cy, Co and C3 > 0,

(@)l (z)] < Ca(1 + |x)),
o (@) (2)] < Ca(1 + [2l*),

and

[E <h(:c + F(x,2)) — h(z) — F(a, Z)h/(x)) Ad2)

< Cg/ |F(x, 2)|A(d2)

<cg</ Pz, 2) — F(0, 2)|\(d2) /yF 0,2 \)\(dz))

<y [ Jola(@z) + G5
E
< C3(1 + |z).
Finally, by using Lemma 4, we conclude that ¢t — ELh(X;) is continuous. O
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3. APPROXIMATION OF MEAN REFLECTED SDES BY AN INTERACTING REFLECTED PARTICLE
SYSTEM.

By using the notations presented in the beginning of Section 2, in particular equation (2.9),
the unique solution of the SDE (1.2) can be derived as:

t
Xy :X0+/ b(X, )ds+/ -)dBs +/ / X,—,2)N(ds,dz) +sup Go(us), (3.1)
0 s<t

where p; stands for the law of

U = Xo—l—/ b(X ds+/ -)dBs +// X4, 2) ds dz).

Let us consider the particle approximation of the above system. In order to do this, let us
introduce the particles: for 1 <i < N,

. —_ . t .
X; =X, +/ b(X:_)ds —I—/ (X!_)dB: + / / Ni(ds,dz) +sup Go (1Y), (3.2)
0 s<t

where (B* )1<l< ~ are independent Brownian motions, (N A)1<Z< N are independent compensated
Poisson measures, (X0)1<z<N are independent copies of Xo and ) represents the empirical
distribution at time s of the particles

. — . t .
U;:X5+/b(xg)ds+/ (XP_)dBi + //F Ni(ds,dz), 1<i<N,
0

N
1
namely Y = N Z dyi- Note that
i=1

N
1 .
Ny _ . i
Go(uy ) —1nf{x >0: N El h(z+UY) > O},

KN = sup Go(ul)).
s<t

Now, we can prove the propagation of chaos effect. In order to do it, let us introduce the
following independent copies of X

. — . t — .
X;:X3+/ b(X;)ds—i—/ (Xi_)dBi+ // Ni(ds, dz)+sup Gol(s), 1<i<N,
0

s<t

where the Brownian motions and the Poisson processes are the ones used in (3.2).
In addition, we introduce the decoupled particles U*, 1 < < N:

t
U'g:X3+/ b(X;)ds+/ (XI)dB! + //F 2)N(ds, dz).
0

It is worth noting that the particles (Uf)1<i<n are i.i.d.. Furthermore, we introduce i as the
empirical measure associated to this system of particles.

Remark 4. (i) Under our assumptions, we have E [h (X()] = E[h(Xo)] > 0. However,

there is no reason to have
1 N
(3
2 h(X
i=1
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even if N is large. As a consequence,

N
. 1 iy
GO(N{JV):lnf{ﬁUZO:N;:1h($+Xo) 20}

is mot necessarily equal to 0. As a byproduct, we have X} = Xi + Go(udY) and the non
decreasing process sup,<; Go(u) is not equal to 0 at time t = 0. Written in this way,
the particles defined by (3.2) can not be interpreted as the solution of a reflected SDE. To
view the particles as the solution of a reflected SDE, instead of (3.2) one has to solve

t t t
XZ:X8+G0(;L{)V)+/ b(X;_)ds+/ a(X;_)dB;+/ /F(X;_,z)NZ(ds,dz)—thN,
0 0 0 JE

LS (xi) "L () dkY
ST h(xE) >0, / h(X}) dKN=0,
Ni:l 0N¢:1

with KN non decreasing and Kév = 0. Since, we do not use this point in the sequel, we
will work with the form (3.2).

(ii) Following the proof of Theorem 1, it is easy to demonstrate existence and uniqueness of
a solution for the particle approximated system (3.2).

We have the following result concerning the approximation (1.2) by interacting particle system.

Theorem 2. Let T' > 0 and assume that (A.1) and (A.2) hold.

(i) Under Assumption (A.3), there exists a constant C' depending on b, o and F such that,
foreach j € {1,...,N},

)2 M? 2y M ~1/2

E|sup|X! - X!]°| <Cexp(C|1+ — |(1+T?%) |— N~

ot m2 m2

(ii) Under Assumption (A.4), there exists a constant C' depending on b, o and F such that,
foreach j € {1,...,N},

o M? 1+ T2
E{Sup | X7 — XgP] < Cexp <C<1 - 2)(1 +T2)> +2 (1 —i—E[sup yXTPDNl.
s<T m m s<T

Proof. Let t > 0. We have, for r < t,

| X7 - Xi| < '/ b(X7 ) — b(X7 )ds| +
0

/Or <U<Xg> - a(Xg'))ng

o[ (P - ) ) W

Due to the following inequality

+ | sup Go(pd") — sup Go(us)|-
s<r s<r

| sup Go(ul) - sup Go(y1;)| < sup |Gol(ph') = Golus)| < sup |Go(pl') — Golps)]

Y

< sup |Go(us) — Go(ind )| + sup |Go(s") — Go(us)

we obtain

sup | X7 — XJ| < Iy 4+ sup |Go (1)) — Go(al)| +sup |Go () ) — Go(us)), (3.3)
r<t s<t s<t
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where I is defined by

t . r ) . )
I :/ 1b(XT_) — b(X7_)|ds + sup / <U(Xg_)_g(xg_)>d32
0 r<t 0
+ sup / / <F(Xg_,z) —F(Xg_,z)>Nj(ds,dz) :
r<t 0o JE

Firstly, due to Assumption (A.1), Doob and Cauchy-Schwartz inequalities, we have

t 2 t 2
E[|L]7] SC{E[t/ ds] +E[/ ds]
0 0
t 2
+E[ )\(dz)ds]}
E
t . _ 12 ¢ . _ 12
gc{tcl/ E[\Xg_xg\ ]ds—i—Cl/ E[\Xg—xg\ ]ds
0 0
+01/ E[\Xg—Xg\ }ds}
0
t o
§0(1+t)/ E[\Xg—Xg] ]ds.
0

where C' is a constant that depends only on b, o and F'. Note that C' can change from line to
line.

b(X7 ) — (X))

o(X ) —o(X])

- F(ngvz)

Secondly, in view of Lemma 2,
M 7 i (] 1
sup [Go (') — Go(jig)| < —Supfz U: — U] < **ZSUP‘U Ul
s<t m <t
Moreover, taking into account that the Varlables are exchangeable, Cauchy—Schwartz inequality
implies
N M? al L 9 M? P =2
E G -G — U:-U;|"| =—=E ul-Ul|"|.
[ptonish - GuathF| < Sy Dol -0 = el -]
Since

Ui = / (b(XT_)—b(X7_))dr+ / (o(X7)—o(X7_))dBi+ / / _F(X7_), 2) N9 (dr, d2)
0
and following the previous computations, we get
N N2 M? t 9
E|sup |Go(ud) — Go(i)|"| < C—(1+1t) | E||X]—X]|"|ds.
Sgt m 0
Consequently, combining the previous estimations with equation (3.3) gives

t
E{sup }Xﬂ - XZ‘Q] < K/ ]E[‘Xg - ng] ds +4]E[sup ‘Go(ﬁév) - Go(us)‘Q]
0 s<t

r<t

t
< K/ |:Sup’X] Xﬂ}Q}ds—f—llE[sup}Go(uév) —Go(,us)|2:|,
0 r<s s<t
where K = C(1 +t)(1 + M?/m?). According to Gronwall’s Lemma, we get
B sup 7 - X°] < 0B sup lGa(a?) - Gal ]
s<t

r<t
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In view of Lemma 2, we have
2 1 2
E[sup}aow)—eo(usn } < mZE[sup }

s<t s<t

[ #Gotin) + ) = du)

which leads to

S 1
E[sup }Xﬂ - Xﬂ‘Q] < C’eKtzE[sup
r<t m s<t

2]. (3.)

/ W(Golpa) + )dAY — dpss)

Proof of (i). Since h is at least a Lipschitz function, the rate of convergence will be given by
the convergence of empirical measure of i.i.d. diffusion processes. As we consider a uniform
convergence in time, getting the usual rate of convergence is not straightforward. If we only
suppose that (A.2) holds, we obtain that:

2 2
M _
| < 20k s )]

1
E[sup
s<t

m? s<t

/ h(Golns) +-)(dfiy’ = dpss)

According to the additional Assumption (A.3), and in view of (|[BCARGL16], Theorem 3.2, Proof
of (i)), we have

E{sup Wf(ui\[,us)] < CN7YV2,
s<1

Proof of (ii). Under Assumption (A.4), we can get rid of the supremum in time by using the
sharp estimate

E {Sup 2 } . (3.5)

s<t

/ W(Golp) + )(dEY — dsy)

According to Proposition 3, let ¢ be the Radon-Nikodym derivative of Go(u). Since (U?)1<;<n
are independent copies of U, we have

N
Ry(s) := / h(Go(ps) + ) (dind — dps) = % > h(Go(us) + Ul) = E[h(Go(ps) + Us)]
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where V' is the semi-martingale s — Go(us) + UL
It follows from It6’s formula

w(Vi) = n(V§) + / AV dGo(ur) + [N V) [ o (X w1 a;
/ / 2)W (VL) N'(dr, dz) +;/0 o (X)W (V2 )dr

oy
gy
= n(%) +
I
J ot

WV + F(X!,2) = h(VE) — F(X!_,2)W (VL)

T

A(dz)dr

T

s

(1

/ W (V! )wrerr/Osb(Xﬁ_)h’(W_)err;/OSUQ(Xj_)h”(W_)dr
( i

WV + F(XI-,2)) —h(V-) - F(Xj_,z)h’(w_)>zvi(dr, dz)

0

(Vi + F(X!,2) —h(V) = F(X!_, )W (V- ))A(dz)dr

) _)dB! + / /( ))—h({/j))ﬂri(dr,dz)
:h(vg)+/08 (Vi ¢rdr~|—/ Ly h(V )dr+/0 W(Vi)o(X!_)dB:
+// <h(V1 + F(X!_,2)) —h(w_)>Ni(dr,dz)
D)+ [0y Ex nV) Y+ [0V )X

+/0 /E<h Vi 4 F(X,2)) —h(v;"))N"(dndz),

Taking expectation gives
E[W:)} :E[h(va')] + / R[N (V) + L h(VE)]dr
0 r
= H(Go(p0), po) + /0 E[W (Vi) + Ly h(V;)]dr

+
_|_

=0+ /SE[h’(Vf_)wr + Ly h(V)]dr.
0 -

Immediately, we deduce that
RN R
= Z h(Vy) + N Z/ C*(r)dr + Mn(s) + Ly(s)
i=1 i=1 70
1 & , s 1L
= Zh(vol) + / < ch(T))dr + Mn(s) + Ln(s),
N3 o \N
where
C'(r) =W (V) + Lo h(Vie) —E[W(VE)dy + L h(VE)],

Mn (s NZ/ WV, _)dBi,
NZ// h(Ve + F(X- ))—h(VTE)>Ni(dr,dz).
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S 1 N
+ su — C(r

N
1 . 1 )
< ‘NZh(Vg) + NZOZ(T)
=1 i=1

Then,

sup| R (s)] < \Zh Vi)

s<t

dr + sup |[Mpy(s)| + sup | Ly (s)]
s<t s<t

dr + sup |[Mn(s)| + sup | Ly (s)|.
s<t s<t
Since (U" )1<z<N and ( )i<i<n are i.i.d and by using Cauchy-Schwartz inequality, we obtain

E[supRN |2 <4{ Zh G ] +E[< ot Jbg@(r) dr>2]

s<t

Hence, we get

E[supm]v( ﬂ <

4t
h(Vp)] / v(C dr+4]E[sup|MN( )|2] +4E[sup\LN(s)\2]
s<t

Ly
N s<t s<t
4 _
= VI 4y [ VOV Y+ B n(Var
N N Jo r
+4]E[sup\MN(s)\2] +4E[sup|LN(s)|2]
s<t s<t
Since My is a martingale with
t
i i \\2
M =5z 2 [ (o) ar

Doob’s inequality leads to

E[sumMN(s)ﬂ < 4B [|My (1))

s<t
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Then, using Doob inequality for the martingale Ly, we obtain

E{SEMN(S)F] < 4E[|Ly ()]
;i s[([[ [ (0 + ) - Fiana)) |

Ni [// h(Vi + F(XE ))—h(vj,))Ni(dr,dz)

1<7,<]<N

/ / h(VI + F(XI_ 2)) —h(VTj))Nj(dr,dz)}
_ ]\”;22/0 /EIE[(h(VTi LR, 2)) _h(v;'))Q]A(dz)dr
=1
_ ;/;/E}E[(h(w_ + P(X1, 2)) —h(W_))Q])\(dz)dr.

Finally, using the fact that h has bounded derivatives, b, 0 and F' are Lipschitz, we get

E[sup |RN(s)|2] <C(1+1t%) <1 +E [sup |Xs|2]>N_1.

s<t s<t

This gives the result coming back to (3.4).

4. NUMERICAL APPROXIMATION AND ITS PERFORMANCE FOR MRSDE.

In this section, the numerical approximation of the SDE (1.2) on [0,7] is studied. Let 0 =
To < Ty < --- < T, =T be a subdivision of [0,7] and define " " the mapping s — s = T} if
s € [Tk, Tx+1), k € {0,--- ,n —1}. Let us consider the case of regular subdivisions: for a given
integer n, Ty, = kT/n, k=0,...,n

According to the previous section, we have shown that the particle system, for 1 <i < N,

t
XZ:X'6+/ b(X;')ds—i—/ (X!_)dB: + / / 2)N'(ds, dz) + sup Go(u2),
0 s<t
where
| X
:u’iN = NZaUtM
i=1
Uf—X8+/ b(X;)ds—i—/ (X!)dB: + // Ni(ds,dz), 1<i<N,
0

B? being independent Brownian motions, N* being independent Poisson processes and X§ being
independent copies of Xy, converges to the solution of (1.2). Hence, to determine the numerical
approximation, we apply an Euler scheme to this particle system. The discrete version of the
particle system is: for 1 <i < N,

t
Xf:X6+/ b(X )ds+/ X’ )dB® + / / 2)N'(ds, dz)—l—squo(uS ),
0

s<t
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where
1 N
~N __ _
i = 5 29
1=

t t t
U;‘:Xng/ b(X;_)ds+/ a(X;'_)dB;'+/ /F(X;_,z)Ni(ds,dz), 1<i<N.
0 N 0 N 0 JE

4.1. Scheme. In view of the above notations and taking into account the result on the interacting
system of mean reflected particles of the MR-SDE of Section 3 and Remark 1, we deduce the
following algorithm for the numerical approximation of the MR-SDE.

Remark 5. [t should be pointed out that, at each step k of the algorithm, the increment of the
reflection process K is approximated by the increment of the following approximation:

ARKYN = sup Go(ﬂ%) — sup Go(ﬂ%). (4.1)
<k I<k—-1
First, we consider the special case when the SDE is defined by
t t t ~
Xy = Xo +/ b(XS—)dS—i—/ 0(X,-)dBs —{—/ F(X,-)dNs+ K, t>0,
0 0 0
t
Bb()) 20, [ EIR(X))dK. =0, t=0.
0

where N is a Poisson process with intensity A, and Ny = N; — At.
According to Remark 1, the increment (4.1) can be estimated by:

—N
ALK =
inf {x >0 Jbgh<x+ (X%il)i +Z;<b<(X%ivl>> _ AF((X;ZVl)j) n \\/ga«x;:l))a

+ F<<X§ﬁjl)>[{> > o},
where G7 ~ N(0,1) and H’ ~ P(A\(T/n)) and are i.i.d..

In addition, similar procedures as in the proof of Theorem 1 can be used to verify that
the increments of the approximated reflection process are equal to the approximation of the
increments:

/\N A
VEe{l,---n}: ALK =ARKY.
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Algorithm 1 Particle approximation
1: for 1 <j < N do

~ ~N ~ ~N
(=) (@) ) = @t
end for
for1 <k <ndo
for 1 <j < N do
GI ~ N(0,1)
HI ~ P(A\(T/n))

o

8: (U;:)” _ (0%11)j +(T/n) (b<<)~(§5_1>3> _ AF((X;:_JJ))
U e VG Jo () )
e = NS G,

12: Akf(N = sup;<j, Go(fi,) — sup<j_1 Go(iiy))
13: for 1 <j <N do

W () = (%) +a@m (b(@zg:l)j) () 1)]‘))
Y () e (e
17: end for

Returning to the general case (1.2), we can see in [YS12|, N = {N(t) := N(E x [0,])} is a
stochastic process with intensity A that counts the number of jumps until some given time. The
Poisson random measure N(dz,dt) generates a sequence of pairs {(¢,&;),7 € {1,2,--- ,N(T)}}
for a given finite positive constant 7" if A < oo. Here {¢;,7 € {1,2,--- , N(T')}} is a sequence of
increasing nonnegative random variables representing the jump times of a standard Poisson pro-
cess with intensity A, and {§;,i € {1,2,--- , N(T)}} is a sequence of independent identically dis-
tributed random variables, where §; is distributed according to f(z), where A(dz)dt = A\ f(z)dzdt.
Then, the numerical approximation can equivalently be written in the following form

. . T . . T _. .
X%k = X%kfl + p (b(X%kl) — /E)\F(X%kl,z)f(z)dz> + \/ZU(X%kl)GJ

+ > F(X &)+ ApKY,
i=Hj, 41
ALKN = ALK =
1 N iy T . :
inf {:c >0: N Zh(x + X%kfl + = - ( X%k . /E)\F X%k N f(z)dz> + \/;U(X%kl)GJ
1=1

HJ
Ty
+ Y P(XE 5) 0}
z—H%}Cl

where G7 ~ N(0,1) and H/ ~ P(A(T/n)) and are i.i.d..
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4.2. Scheme error.

Proposition 4. (i) Let T > 0, N and n be two non-negative integers and let Assumptions
(A1), (A.2) and (A.3) hold. There exists a constant C, depending on T, b, o, F', h and
Xo but independent of N, such that: for alli=1,..., N

E[Sup ‘X; —X;F] < C<n_1 +N_1/2).

s<t

(ii) Moreover, if Assumption (A.4) is in force, there exists a constant C, depending on T, b,
o, F, h and Xy but independent of N, such that: for alli=1,...,N

E[Sup {X; - X;}ﬂ < C’(n_l —I—N_1>.
s<t

Proof. Let usfixt€1,...,N and T > 0. We have, for t < T,

‘/ b(XP_) — b(X7)dr| + ’/( (X1) — o(X )>de
‘//( - F(X), ))N’(dr dz)

Hence, using Assumption (A.1), Cauchy-Schwartz, Doob and BDG inequalities gives

el gt 5] < s | [ (s o5 Yo | [ (o) ot Yo
+‘/OS/E<F(X7§_,Z)—F()~(T_, ))N’(dr,dz)
<c{ i st]w{/;

2
+E[

X - X’

+sup |Go(") — Go(fiy )]
r<s

2

+ sup |Go (1) GomiV)!ZH

r<s
2
ds]

o(Xio) —o(Xi)

t
b(X;-) —b(X-)

- F(X}-,2)

)\(dz)ds] +E[SHP!G0 ') GO([‘{*V)‘QH

s<t

t
gc{TCl/ [‘X; S’ ]ds+C1/ E[‘X;—Xé‘z]ds
0 - 0 -
t . ~ .
+01/ E[\Xé—Xélz]dsw[sgg\cio(uév)—Go(ﬂivﬂﬂ
0 s<

¢
< [ B| Xt %P s+ 48] sup 6o ~ G|
0 - s<t N
| | | (12
Denoting by (p)o<t<r the family of marginal laws of (Uf)o<t<r and (fij)o<i<r the family of
marginal laws of (U})o<s<T, we have

E | sup |Go(ul) — Gom?)ﬂ < 3{E[sup |Go(ul) — Go<u2>\2] +sup |Go(ul) — Go(i))?

s<t s<t s<t

s<t

+ E[sup |Go(jil) — Go(ﬂW] }
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and from Lemma 2,

2 2
M y
:| + <) Sule (/’Lgaus)
m

o

2
] —i—supIE[

i

/ B(Go(ui) + ) (dpY — dul)

< 3{ 2IE{sup
m s<t

+ —ZE [sup
m s<t

< C’{E [sup
s<t

+E [sup
s<t

/ W(Goliil) + ) (i — djil)

Ul —U.

]

/ W(Golpl) + ) (dp — dul)

/ W(Go(fi) + )i — djit)

Proof of (i). Following the Proof of (i) in Theorem 2, we obtain

- 2 - -

B sup | [ h(Go) +)(d )| | < CE| supWE(u ,us> <N,
L s<t i L s<t
- ) 2 - - ) -

B sup| [ h(Go) +)(dnY — di)| | < CE| sup Wiz, )| < ON 1/
| s<t ] L s<t -

From which we can derive the inequality
[sup |Go(pl) — Goliy)] ] <G supE[ Ui - U, } +CoNT2
s<t - s<t N
< Cl{ supE[ Ul - U ] —i—supE[ Ui Ul } } + CoNT/2,
s<t s<t -

For the first term of the right hand side, we can observe that
2 2
<ol o]
s<t
< 3E[sup{ / <b(X;’) - b(X'f,))dr
s<t 0 -
+ (F(Xﬁ,z) —F(X’i,z))]vi(dr,dz)
0 JE -
¢ 2 t
<C E[t dS] + E[/
0 0
t 2
+ E[ )\(dz)ds}
E
<cira [ E[\X; x| ]dr+2Cl/ E[\X; x| ]dr
0 - 0 -
< C’/ ]EDX; - X| ]ds.
0 s

supE[Ug—U; Ui - U

s<t

2
+

2

/OS <a(X;;) — a(X':’,)> dB!
1

P(Xi) — o(Xi)

2
(XL ) —b(X.) ds]

- F(X;,,Z)
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2
U; - U; } becomes

Using Assumption (A.1), the second term sup,<; E[

2 r s 2 s 2
supE[if;’—U; ]g3sup{E /b(X;;_)dr + / o(X] dB’ 2)N(dr, dz) ]}
s<t - s<t LI Js - s

- o 2 2 ]
< 3sup E||b(X])| |s —s|” + |o(X]) }Bl Bi|” + (dz)d”
s<t L - N
2

s — s> + |o(X))

}B;’ — BQQ +c/ (1+ |f<;;_\2)dr”

z)QE | sup b(jq;_)ﬂ +E[\B§—B§|2]EDU( ~§)\2]

s<t

< 3sup

< 3sup {E _ b(f(;)

s<t s<r<s - N
T 7|2
+C| = |E| sup (1+|X}|%)
n s<r<s
T\? Sin 2 i 12 Sin |2
< Ci <> [sup ‘b(X;)‘ ] + Cy supIE[‘Bfg — B;‘ ]E[sup ‘J(X;)| }
n s<T s<t - s<T

E [sup(l + \X;|2)}
s<T

E
T\?2 _ A - .9
<Cy () <1 —I—E[sup |X;‘ ]) + Co SupE[‘B; — B;‘ ] <1 +E[sup }Xﬂ ])
n s<T s<t - s<T
T >il2
+Cs|—|(1+E sup‘Xs‘ )
n s<T
and from Proposition 1, we get
Ul -ui

? T i i|2
<Ci| — |+ CysupE ‘BS—BS| .
n s<t -

Then, by using BDG inequality, we obtain

. s 2
. . T
supIE[|BZ B;‘Q =supE </ dBZ) } <supls—s| < —.
J S

s<t s<t

supE[

s<t

Therefore, we conclude

- 2
supE||U —UE| | < Cin~ P+ Con™?
— ] ! 2 (4.3)
<Cn7!,
from which we derive the inequality
t
E[sup |Go(ud) — Go(gfj)ﬂ < C{nl + N~1/2 +/ E{\X; - X;\Q] ds}, (4.4)
s<t - 0 s

and taking into account (4.2) we get

s<t

t
]E[sup X! —ng] < C{nl + N2 +/ E[\Xﬁ - X;‘F] ds}. (4.5)
; s
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Since
E{\Xﬁ —~ X;’\Q] < 2E[\X;’ - X;f] + 2E[|X§ — X;’\Q}
_ QE[\X; _X;E] +2E[|0; _ ff;'ﬂ,

it follows from (4.3) and (4.5) that

. ~ . t . ~ .
E[Sup X7~ X;|2] < C{n—1 + N2 +/ ]E[\X; - X;]Q] ds}.
s<t 0

and finally, we conclude the proof of (i) with Gronwall’s Lemma.

Proof of (ii). Following the proof of (ii) in Theorem 2, we obtain

2_

B sup | [ (Gal(d) + (@i — du)| | <N,
L s<t J
- B ) ) 2_

B sup| [ h(Gol) +)(daY -~ di)| | <CN .
L s<t - N 0

By using the same strategy as the one applied in the proof of (i) in Theorem 4, the result follows
easily:

E[Sup {X; - X;}Q} < C’(n_l —I—N_1>.

s<t

O

Theorem 3. Let T' > 0, N and n be two non-negative integers and assumptions (A.1), (A.2)
and (A.3) hold.

(i) There exists a constant C, depending on T, b, o, F, h and Xo but independent of N,
such that: for alli=1,..., N,

E [Sup |1Xi - X;‘F] < c<n1 + N1/2>.
t<T
(ii) If in addition (A.4) holds, there exists a positive constant C, depending on T, b, o, F, h
and Xo but independent of N, such that: for alli=1,..., N,

E[sup ‘X; — XHQ] < C<n1 + N1>.
t<T
Proof. The proof is straightforward writing

X - Xi| < | X - x|+ | x) - X)L

and using Theorem 2 and Proposition 4. O
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5. NUMERICAL EXAMPLES.

In this section, let us study on [0, 7] the following sort of processes:

t ~
Xt:XO—/(BS+aS )ds—i—/(os—{—vs ~)dBs +// )(ns + 0s X~ )N (ds, dz) + Ky,
0 0

E[h(X;)] > 0, /OtE[h(Xs)] dK, =0, t>0,

(5.1)
where (B¢)t>0, (at)t>0, (01)1>0, (V)t>0, (Mt)r>0 and (¢)r>0 are bounded adapted processes. This
sort of processes is chosen to make some explicit computations which allow the illustration of the
algorithm. Different diffusions and functions h are considered in order to illustrate our results.

Linear constraint. Firstly, we consider the cases where h: R>z+—— x —p € R.

Case (i) Drifted Brownian motion and compensated Poisson process: 8y = 8 >0, a; = v = 0, =
0,00 =0>0,m=n>0, Xo=2x0>p, c(z) =2 and

1) = e (- )10,

o 2
We have
Kt = (p + 5t - $0)+7
and
Ny
X =Xo— (B+Me)t + 0B+ > 0 + ks,
i=0

where Ny ~ P(At) and &; ~ lognormal(0,1).
Case (ii) Black and Scholes process: 5y = o = =0, a4 =a >0, % =75 >0, 0, =60 >0,
¢(z) = 61(z). Then

Ky = ap(t — t*)14>4+, where t* = 1(In(z0) — In(p)),
and

t
&:n+n/n%m&
0
where Y is the process defined by:

Y, = Xgexp ( —(a+7%/2+ \O)t + th) (1+0)N

Nonlinear constraint. Secondly, we illustrate the case of non-linear function h:
h:Rozr—z+asin(z) —peR, -1<a<l,

and we illustrate this case with

Case (iii) Ornstein Uhlenbeck process: 8y = >0,a; =a>0,v% =60, =0,00 =0 > 0,7 =n> 0,
Xo = zo with g > |a| + p, ¢(z) = d1(2). We obtain

dK; = e~ “dsup(F; ' (0)*,
s<t
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where for all ¢ in [0, T,

F,:R>z H{e—‘” (:co — ﬁ(eata_ 1) - x) + avexp ( — e—atg; sinh(at))
[1 exp(M(e — 1)) + exp(At(e — 1))) sin <e—at (:co (B4 M) (6_;_1> 4 x>)
+ 21Z,(exp()\t(ei" — 1)) — exp(Mt(e™™ — 1))) cos (e—“t (mo — (B+ M) (‘e_a;_1> + a:))
. p}

Remark 6. We choose these examples in order to obtain an analytic form of the “true” reflecting
process K which can be compared numerically with its empirical approrimation K. Having the
exact simulation of the underlying process, we can verify the efficiency of our algorithm.

5.1. Proofs of the numerical illustrations. In order to have closed, or almost closed, expres-
sion for the compensator K we introduce the process Y solution to the non-reflected SDE

Y = Xo—/t(63+as )ds+/t(as+vs )dBs +// )(ns + 05V~ )N (ds, dz).

By letting As = fo asds and applying Itd’s formula on e X; and e?Y;, we get

t

t t
At X, = X0+/ As x asds+/ eAS(—B —a.X )ds—l—/ (05 + s Xs—)dBs
0

// 2)(ns + 05X~ )N (ds, dz) + /t AsdK,

¢ ¢
:XO/ eASBSder/ (s + s Xs-)dBs +/ / 2)(ns + 0s X - )N (ds,dz)+/ e dK,.
0 0 0

In the same way,

t t t B
MY, = Xy — / e Bods + / et (05 + 75 Y,- )dBg + / / ese(2)(ns + Y.~ )N (ds, dz),
0 0 0 JE

and so
t

Xt:y;+e—At/eAdes+e—At/ sy (Xg= + Y- )dB, + e~ // (Xo— 4+ Y- )N(ds,dz).
0

Remark 7. In all cases, we have a; = a i.e. Ay = at, so we get

E[Y;] = E[e“t <xo — /Ot e*Bds —|—/ *(os + vsYs-)dBs —I—/ / )(ns + 05Ys—) ~(ds,alz))}
=e o (xg — /Ot e“sﬁds>
. et —1
erfo(222)

Proof of assertions (i). From Proposition 3 and Remark 7, we have

ki = Blgx,)=p
= BlE(y)+K¢—p=0
= ﬁlxo—ﬁt+Kt—p:07
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t
Kt:/ ksds
0

t
= / 61K5=p+ﬁS—X0 ds,
0

so, we obtain that

and as K; > 0, we conclude that
Ky = (p+ Bt —z)*.

Next, we have

1) = e ( - ““;)2),

the density function of a lognormal random variable, so we can obtain

| mexaz) = [ ar)az = wie)
E E

where £ ~ lognormal(0, 1), and we conclude that

/ nzA(dz) = Any/e.
E

Finally, we deduce the exact solution

N

X = Xo— (B+MWe)t+ 0B+ Y néi + K,
1=0

where Ny ~ P(At) and &; ~ lognormal(0, 1).

Proof of assertions (ii). In this case, and using the same Proposition and Remark, we have

ki = (E(—aXt)) 1gx,)—p

which
E(X)) =p<=EY,) —p+e ™ /t e*dKs =0
’ t
= —gge @ 4 p= e“t/ e dK,
— K = ap, "
and

K >0 —zge @ +p>0

e et < P
x0

=t> 2(1H(1‘0) —In(p)) :=t*.

So, we conclude that K; = ap(t — t*)1;>4, where t* = 1 (In(zo) — In(p)).
Next, by the definition of the process Y;:
dY; = —aY;-dt + Y, dBy; + Y, dNy,
we have
Yi=Xoexp (= (a+72/2+ M0)t +7B;) (1+60)™.

29
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Thanks to Itd’s formula we get

1 1 1/ 2 1 1 1
dl =) = ——=dY; + = | = |V?Y2dt +d _ — —— 4+ —AY.
(y;) % tU(YE)“ * ;(YS-MYS v, VZ )

a v 0 - A2 1 1 0
= —dt — —dB; — ——dN; + — =
ydt =y dBi— g—d t+Ytdt+d;<<1+9)Ys vty )

and so

i 62
-1 _ 21\ —1 -1 -1 -1
dY, = (a+7°)Y,dt =Y, dB; — 0Y," dNt+<1+9>d;YS

= (a+ 2+L62 Y ldt — v tap, — (2
- T 1) TPt T 11

Then, using integration by parts formula, we obtain

d(X, Y, ) = Xp-dy, '+ Y, dX + d[X, Y Y,

>Yt_1dNt.

92
146

= (a+~°) XY, Hdt — v XY, dBy — 0X,- Y2 N, + < >d > X,y
s<t
—aX,Y; 'dt + X, Y, 'dB, + 0X,- Y, NN, + Y, K,
92
— 2 XYt — X, vt
VXY= (1 d; Y,

=Y, 'dK;.

Finally, we deduce that
t
X =Y + Y;/ Y, dK,.
0

Proof of assertions (iii). In that case, we have

at _q t t B
Y, = e <;1:0 - p <e ” )) + ase_at/ e**dB, + e_“t/ nse**d Ny
0 0

et _ | t t

— e <x0 —(B+ )\17)< >> + Use_“t/ e**dB,s + e_“t/ nse*d Ny
a 0 0

= fi + G+ Fy,

and
t
Xi=Yi+e YK, K= / e dK.
0

Hence
h(Xy) =Y+ e K 4+ asin(Y; + e " K;) — p

=Y +e K + a<sin(Yt) cos(e" ™ Ky;) + cos(Y;) sin(e_“tf(t)) —p
=Y, +e MK, + a[cos(e*“tkt){ sin( f;) cos(Gy) cos(Fy) + cos( fy) sin(Gy) cos(Fy)
+ cos(ft) cos(Gy) sin(Fy) — sin( f;) sin(Gy) sin(Ft)} + sin(e_“tf(t){ cos( ft) cos(Gy) cos(Fy)

— sin(f;) sin(Gy) sin(F};) — sin(f;) cos(Gy) sin(F;) — cos(fi) sin(Gy) sin(Fy) H - p.
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: : : . : . . o1 — 20t 9 _atSinh(at)

On one side, since Gy is a centered gaussian random variable with variance V = o oy =o‘e " —m—=,
a a

we obtain that

E[eiGt] _ er/Z7

th _ —iGt
E[sin(Gy)] :E[e 2@_‘3 ] — 0,

and
iGz —iGt . 2
E[cos(Gy)] = E [6—1—26] = E(e'“t) = exp < - eat;sinh(at)> =:g(t).
a

On the other side,
t
E[eit] = E[exp (ine“t/ e“‘(”dNS)}7
0

by taking ‘a’ small, we get

and so

Efsin(F)] ~ exp ( ) — exp ( e~ — 1))

E[cos(F})] ~ =P ()\t(ein _ 1)> +26Xp (At(eim _ 1)) =:n(t).

Using Remark 7, we conclude that, for small ‘a’
E[R(X)] ~ E[Y)] + ¢ K, + a(g(t)m(t) cos(fy + e K) + g(t)n(t) sin(fi + e ' Ky) ) = p
= Ft(Kt)

Therefore,
_ 1 + —at _1 +
K; = sup (Fs (O)> and dK; = e “dsup (Fs (O)) .
s<t s<t
U

5.2. IMlustrations. This computation works as follows. Let 0 =Ty < T} < --- < T, =T be a
subdivision of [0, 7] of step size T'/n, n being a positive integer, let X be the unique solution
of the MRSDE (5.1) and let, for a given ¢, (f(’ Jo<k<n be its numerical approximation given by
Algorithm 1. For a given integer L, we draw (X Do<i<r, and (X “M)o<i<r, L independent copies
of X and X*. Then, we approximate the L2-error of Theorem 3 by:

(5.2)

Figure 1 illustrates the evolution in time of the true K (full line) and the estimated K (dotted
line for particle method) (dashed line for density method) in case (i). It is confirmed that the
approximation of K is almost the same as the exact solution. The evolution of log(E) w.r.t.
log(N) is depicted in Figure 2. It can be seen that the slope is equal to 0.9, which is consistent
with the statement of Theorem 3.
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True K, {full line}, estimated k, {dotted line for particle method) (dashed line for density method)
155

FIGURE 1. Case (). n =500, N = 100000, T =1, B=2, 0 =1, A=5, 29 =
1, p=1/2.

Regression: Slope = -0.93015

05

O Data

"""" Slope & Intercept ]

51

25T

Q

351 ‘5

45 5 55 6 6.5 7 75 8

FIGURE 2. Case (i). Regression of log(F) w.r.t. log(N). Data: E when N varies
from 100 to 2200 with step size 300. Parameters: n =100, T =1, 8 =2, 0 =1,
A=529=1,p=1/2, L =1000.

Figure 3 illustrates the evolution in time of the true K (full line) and the estimated K (dotted
line for particle method) (dashed line for density method) in case (ii). As in the previous example,
the approximation of K is almost the same as the exact solution. The evolution of log(E) w.r.t.
log(N) is depicted in Figure 4. It can be seen that the slope is equal to 0.9, which is consistent
with the statement of Theorem 3.
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True K, {full line}, estimated k, {dotted line for particle method) (dashed line for density method)

08

06

0.4

02r

FIGURE 3. Case (ii). Parameters: n = 500, N = 10000, T =1, 8 =0, a = 3,
y=Ln=LA=22=4p=1

Regression: Slope = -0.84526

-36

) O Data
L N Slope & Intercept | |

520 o"

541

56 : : :
4.5 5 55 ] 6.5 7

FIGURE 4. Case (ii). Regression of log(E) w.r.t. log(N). Data: E when N varies
from 100 to 800 with step size 100. Parameters: n = 1000, T =1, 8 =0, a = 3,
y=1,n=1, =2 29=4,p=1, L =1000.

Figure 5 illustrates the evolution in time of the true K (full line) and the estimated K (dotted
line for particle method) (dashed line for density method) in case (iii). Moreover, we notice that
the approximation of K with particle method is closer to the exact K than the one with density
method.
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True K, {full line}, estimated k, {dotted line for particle method) (dashed line for density method)
1

09+

0ar

07

0B

0aF

0.4

03r

02r

01r

FIGURE 5. Case (iii). Parameters: n = 1000, N = 100000, T = 15, 8 = 1072,
oc=1,p=m/2,a=0.9,a=10"2 xq is the unique solution of z+asin(z)—p =0
plus 1071

APPENDIX A. APPENDICES

A.1. Proof of Lemma 4. Let s and ¢ in [0,7] be such that s < ¢.

Firstly, we suppose that ¢ is a continuous function with compact support. In this case, there
exists a sequence of Lipschitz continuous functions ¢, with compact support which converges
uniformly to ¢. Therefore, by using Proposition 2, we get

[Elp(Xt)] = E[p(Xs)]] < [Elp(Xe)] — Elpn(Xe)]| + [Elpn(Xt)] = Elon(Xo)]| + [Elen(Xs)] — E[p(X)]]
< E[l(¢ — ¢n)(X)[] + CuE[| Xy — X[] + [E[(on — ¢)(Xs)]]
< 2E[|| ¢n — ¢ [loo] + Cu(B[|IX: — X))
< 2E[|| @n — ¢ lloo] + Cult — s|"/>.
Thus, we obtain that
limsup [E[p(X;)] — Elo(Xs)]| < 2E[|| ¢n — ¢ [loo]-

t—s

This result is true for all n > 1, so we deduce that

lim sup |[E[p(X)] — E[p(X)]| = 0,
t—s
then we conclude the continuity of the function ¢ — E[p(X})].

Secondly, we consider the case where ¢ is a continuous function such that
Ve e R,3C € R, ¢(z) < C(1+ |z[P).
We define a sequence of functions ¢,,, such that for all n > 1 and x € R,

pn () = p(x)0n(x)

1 <
00 () = {1 if || <n

0 if|z|>n

with
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Based on this definition, ¢, is a continuous function with compact support. Then we get
Elp(X)] - Elp(X,)]| < |E[(¢ = 00)(X0) (Uxsjn + Lxon)] | + [Elen(Xo)] - Elon(Xs)]
+ |E[(n = (X)X, <n + Ixopon)|
< |E[(p = en)(X0)Lixypon] | + [Elon (X)) — Bl (X)]| + |E[(n — 9)(Xe) L o]
< 2E[lp(X0) 1, > + [Elpn(Xe)] ~ Elpn(Xa)]| + 2E |[o(Xs) 1jx, om
< CE[(1+ | X)L, >n] + [Elen(X)] — Elpn(Xs)]| + CE[(1 + Xo[P) 1, 5n]

< CE|(1+ 5D [ X1[") g,y xy15n | + [Bleon(Xe)] ~ Elon(Xe)]|

Thus, by using the first part of this Lemma, we obtain that

lim sup [E[p(X;)] ~ Elp(X,)]| < CE[(1+ 5up [ Xel") L, . 5, 5]
t—s t<T -
This result is true for all n > 1, then by using the dominated convergence theorem, we deduce
that
lim sup |[E[p(X:)] — E[p(X)]| = 0,
t—s
and we conclude the continuity of the function t — E[p(Xy)].
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