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Abstract

Domotic systems aim to offer functionalities like energy
management, security, conveniences, and much more. Many
domotic networks exist to provide a subset of these appli-
cations, but these networks are not necessarily compatible
due to different communication mediums or protocols. Lit-
erature presents different studies that introduce high-level
systems that solve the lack of incompatibility, but it does
not explore how to create a network behavior. This pa-
per concentrates on studying how to model the unit behav-
iors of home devices and a global behavior of a network of
these devices: the automated living area. The global behav-
ior is set-up with rules and constraints. The behaviors are
modeled with an extended automaton input-output symbolic
transition systems. To finish this paper, a use case shows the
interest of building global behavior with unit behaviors.

1 Introduction

Domotic aims to offer functionalities like energy man-
agement, security, conveniences, and much more. Home
automation covers a wide range of independent applica-
tions like opening control, light monitoring, access con-
trol... Many domotic networks exist to provide and to man-
age a subset of these applications, but these networks are
not necessarily compatible due to different communication
mediums or protocols. Thus, home automation is nowadays
a set of heterogeneous protocol networks that cannot com-
municate together.

Literature presents different studies that introduce high-
level systems to solve the lack of incompatibility. Through
these systems, the access to a device using a protocol from
other protocols is possible. To reach the domotic objec-
tives, these systems are essential but not sufficient. From
the users perspective, the domotic system must react to its
environment. These reactions are the behaviors of the do-
motic network and are constructed from the behaviors of
each device and rules expressed by the user.

This paper proposes models and methodologies to auto-
matically construct domotic network behaviors. This con-
tribution extends the formal Input Output Symbolic Tran-
sition Systems (IOSTS) model [2] to characterize the be-
haviors of communicating devices and the behaviors of the
global network. The methodology to produce final models
from rules is given. The rules can be constraints on commu-
nicating devices, or reactions between them. The produced
models are IOSTS models, thus they are compatible with
IOSTS model-checking methodology [3].

This paper is organized as follows: In Section 2, the
classical domotic networks and the research to intercon-
nect these networks are presented. Section 3 introduces two
models. The first one, the device behaviors automata, mod-
els the behaviors of each device to express the knowledge
about the devices for the domotic system. The second one,
the reflex automata, permits the domotic system to react on
events. Section 4 presents how to translate a constraint on a
device to a reflex automata. This section also presents how
to interconnect remote devices through a reflex automata.
This paper is concluded and different future works are pre-
sented in Section 5.

2 Domotic Background

Automated living area means a dwelling and its sur-
rounding equipped with communicating devices. A device
can be an actuator to interact with its environment, a sensor
to acquire data from its environment or an interface to ex-
change data with a user. A Domotic System (DS) provides
a set of services that interact with devices according to pre-
defined rules. The rules are defined with concepts that can
be interpreted by human (watching TV, romantic ambience,
secure home. . . ). The DS services are based on high-level
functionalities, but there is no standard network infrastruc-
ture that can provide all the range of these functionalities.
Thus, the DS assures the translation between the services
and the network infrastructures.

Home automation products have been on the market
since 1975 with X10 product. Other solutions were devel-



oped, and are still being developed, but there is no consen-
sus to adopt a standard network architecture. Dedicated net-
work architectures were developed to increase the function-
alities like Konnex (KNX), or to reduce electrical consump-
tion like ZigBee (ZB) and Z-Wave(ZW). Some of them are
open like ZB, X10 and KNX: manufactures can develop
their own hardware. And others are closed like ZW: manu-
factures need a special ZW component to use the network.
Now, with the introduction of IPv6 and standardized low-
power link like 802.15.4, IP architecture becomes a research
field for sensor networks domain [6]. More details about IP
and communication devices are presented in [10].

All these technologies are not compatible. To integrate
different network technologies and their devices, the DS
needs a way to communicate with all home devices. In the
literature, systems are studied and developed to integrate
devices from different network architectures into a single
abstract network. To provide abstraction of network tech-
nologies, the DS uses a distributed or a centralized system.

The first possibility is to agree with a common set of
network technologies and data format to interact with up-
per services. One of the best example of an agreement of
a common set of networks is UPnP [7]. The second pos-
sibility to create interoperability is to abstract the network
technologies with centralized system that accesses to each
domotic network and translates from/to its own language
each command/notification to/from the destination/source
domotic language. In this case, the DS uses an existing lan-
guage as its own language or redefines a new one [1, 8].

As the DS services need to adapt their behaviors of an
automated living area, they need to know the current state
of the environment: the context [5]. In [9], authors com-
pare methods to model the context, they underline that the
context modeling based on ontologies offer a better level of
formality and can reason. A modeling based on ontologies
is the method chosen by Dog [1]. Dog aims to create an
intelligent gateway to handle communicating object. It uses
an ontology, DogOnt [4], to describe automated living area
and model this way to communicate. Dog and DogOnt are
available at http://elite.polito.it/.

In this paper, models are presented to manage the be-
haviors of a DS. Our work uses DogOnt [4] to abstract the
devices from various network technologies. In this way, we
extend the capacities of DogOnt by introducing how evolve
the devices.

3 Home Behavior Models

The communicating devices have their own way to com-
municate depending on their network technologies. Our
work requires mechanism that shares the status between the
devices. Indeed, the DS needs to know the context of the
automated living area to bring it a behavior. These commu-

nications are asynchronous, the responses can take time and
during this time, the state of the device is unknown and an-
other command can break the execution of a previous one.

A particularity of an automated living area is the num-
ber of sources of control. Indeed, each user and the DS
have a direct access to each communicating device. Thus,
the DS and each user can control a communicating device
at the same time. That is why there is not always the ex-
pected response of a command. The DS needs a mechanism
to describe the behavior of a device, to manage the asyn-
chronous communications and the multiple control points.
The IOSTS automaton [2] are chosen to model all these re-
quirements.

3.1 Device Behavior

To manage a set of devices, the DS needs a knowledge
about the behavior of these devices. We introduce the Be-
havior Automaton (BA) to express this knowledge. Let us
note that a BA is the device behavior from the point of view
of the DS, and not from the point of view of the device. This
remark is very important due to the fact that the communi-
cation between the DS and the device is asynchronous and
a device can be commanded from many others command
systems like remote controls. Thus, the DS cannot be sure
that a command sent to a device is executed until it receives
an acknowledgement.

According to this remark, a state change can occur in
two cases. The first one is when the DS sends a command
and the device executes it. The second one is when a device
receives a command from another command system. In the
former, a particular case can appear when the command is
received – in the point of view of the DS – but never exe-
cuted. In the later, the DS does not send a command, but
receives a notification.

To model this behavior, we define the BA (see Defini-
tion 2) a particular IOSTS [2] (see Definition 1). A notifi-
cation is an output action: the device sends a notification.
It is graphically identified by the symbol “!”. As a notifi-
cation is from the device, the destination state (or location
in our model) resulting of this action is known. Thus, in a
BA the destination of output action is always a known lo-
cation that we call stable location l ∈ L. A command is an
input action that is graphically identified by the symbol “?”.
The DS sends a command, considers the device receives the
command, but does not know if it will be executed. In this
case, the DS cannot know in which state or location the de-
vice is after sending a command. Thus, a virtual unstable
location l ∈ Lv is introduced to represent the fact that the
system does not know the state of a device. According to
this criterion, in a BA the origin of an input action is always
a stable location – the system knows where it is when it
wants to send a command – and the destination of an input



action is always a virtual unstable location. Figure 1(a) il-
lustrates a generic device behavior model without guard or
assignment. As the command transition – an input action
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Figure 1. IOSTS and Short model of a BA.

– is always built in the same model: from a stable location
to a virtual unstable location and followed by a notification
– an output action – from the virtual unstable location to
another stable location if the command is executed or fol-
lowed by an internal retro-action from the virtual unstable
location to the original stable location, this particular path
can be simplified in the notation (see Figure 1(a)).

Thus, to simplify the model, let us note T ?!

the set of transitions – short representation –
“comi?/notj !”. According to this representation
the transitions 〈l2, com1(p1)?, g1(p1), a1, s3〉 and
〈s3, not2(p2)!, g2(p2), a2, l1〉 can be rewritten as
〈l2, com1(p1)?/not2(p2)!, g1(p1)&g2(p2), (a1.a2), l1〉

Definition 1 An IOSTS is a tuple 〈D,Θ, L, l0,Σ, T 〉
where:

• D is a finite set of typed Data, partitioned into a set
V of variables and a set P of parameters. For d ∈ D,
type(d) denotes the type of d;

• Θ is the initial condition, a predicate on V ;

• L is a non-empty, finite set of locations and l0 ∈ L is
the initial location;

• Σ is a non-empty, finite alphabet, which is the disjoint
union of a set Σ? of input actions, a set Σ! of output
actions, and a set Στ of internal actions. For each
action a ∈ Σ, its signature sig(a) = 〈p1, ..., pk〉 ∈
P k(k ∈ N) is a tuple of parameters. The signature of
internal actions is the empty tuple;

• T is a set of transitions. Each transition is a tuple
〈lo, a,G,A, ld〉 made up of:

- lo ∈ L, the origin of the transition;
- a ∈ Σ, the action of the transition;
- G on V ∪ sig(a), the guard predicate;

- A, an assignement which is a set of expressions
in the form (x := Ax)x∈V such that, for each
x ∈ V , the right-hand side Ax of the assignment
x := Ax is an expression of V ∪ sig(a)1;

- ld ∈ L, the destination of the transition.

Definition 2 A BA is a tuple 〈D,Θ, LBA, L0,Σ, T 〉 where:

• LBA = L∪Lv (or LBA = L in short representation)
is a non-empty, finite set of locations (LBA ⊂ L) and
L0 is the set of possible initial locations (L0 = L in
most cases).

• T = T !∪T ?∪T τ is a set of transitions. Each transi-
tion in T# is a tuple 〈lo, a,G,A, ld〉 where a ∈ Σ#

and # ∈ {?, !, τ}. Moreover, ∀〈l, a,G,A, l′〉 ∈
T τ , G = >, A = ∅, l ∈ Lv, l′ ∈ L.

• L is the non-empty set of stable locations such that:
l ∈ L ⇐⇒ ∀〈l′, a,G,A, l〉, a ∈ Σ! ∪ Στ .

• Lv is the set of virtual unstable locations such that:
lv ∈ L

v ⇐⇒ ∃!〈lo, a?, G,A, lv〉 with a? ∈
Σ? ∧ ∃!〈lv, aτ ,>, ∅, lo〉 with aτ ∈ Στ ∧
∃!〈lv, a!, G′, A′, ld〉 with a! ∈ Σ!.

The BA permits the DS to know how a device evolves.
With this knowledge about the devices, the DS can define
the path from a state to another (see Figure 2). This path is
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Figure 2. T&T windows BA.

a command execution and can be defined as follows:

Definition 3 A command execution is a sequence of
alternating locations and input/output transitions
l0t0l1 . . . tn−1ln ∈ LBA.(T

?!
BA.LBA)∗ such that

∀ti loti = li ∧ ldti = li+1.

3.2 Reflex Automata

The main action of a DS is to react to events. Thus, we
introduce Reflex Automata (RA) to model a reactive sys-
tem. A RA is a particular IOSTS that models the constraint
on a device or the interactions between devices. It models
the life behavior of the system managed by the DS. In a RA,



an unstable location can represent an unknown state, like in
BA, it is called a virtual unstable location l

v
or can repre-

sent a transient location that is stable in BA, in this case it is
called transient unstable location l

t
. From the point of view

of the DS, an unstable transient location represents a known
state of the system in which the DS does not want to stay.
The behavior of a RA always begins with a notification –
an output action – that brings the system out of a stable lo-
cation and is followed by a set of actions to move from an
unstable transient location to a stable location using unsta-
ble locations. That means the stable locations can only be
the source or the destination of notifications. Figure 4 and
5 illustrate use cases of a RA model.

Definition 4 A RA is a tuple 〈D,Θ, LRA, L0,Σ, T 〉 where:

• LRA = LBA ∪ L
t

= L ∪ Lv ∪ Lt (or LRA = L ∪
L
t

in short representation) is a non-empty, finite set
of locations (LRA ⊂ L) and L0 is the set of possible
initial locations (L0 = L in most cases).

• Lt is the set of transient unstable locations such
that: lt ∈ L

t ⇐⇒ ∃〈lo, a,G,A, lt〉 with a ∈
Σ! ∧ ∃〈lt, b, G,A, ld〉 with b ∈ Σ?

A RA permits the DS to react to an event. The RA is the
knowledge about the reactions: it defines the reflex execu-
tions:

Definition 5 A reflex execution is a sequence of alternating
locations and input/output transitions l0t0l1 . . . tn−1ln ∈
LRA.(T

?!
RA.LRA)∗ such that ∀ti loti = li ∧ ldti = li+1. A

reflex execution always starts from an unstable transient lo-
cation l0 ∈ LRA

t
, stops on a stable location ln ∈ LRA and

any intermediate location is an unstable transient location
li,i6=0∧i 6=n ∈ LRA

t
.

4 Home Behavior Description

The behavior of a system can be defined by two con-
cepts: interactions between devices and constraints that
limit the possible behavior of a device.

4.1 Event Condition Change

An Event Condition Change (ECC) is used to command
a device from another. For example, a device button (see
Figure 3) commands a device light. This approach is very
flexible and dynamic: a device can command many devices
and it can be also commanded by many devices.

The ECC is a generalization of the classical Event Con-
dition Action (ECA) introduced in the database. An ECC
expresses that, when the event E occurs in a device and the
condition C is satisfied, the change C must be applied in

state2state1

b_state2() !

b_state1() !

Figure 3. Two states button BA.

another device. The ECC introduces two types of changes,
the classical action of ECA and the goal. A goal is a state
for which the set of actions to reach is unknown. Then, the
Event Condition Goal (ECG) is also introduced.

4.1.1 Event Condition Action

An Event Condition Action (ECA) rule is defined as a tuple:
eca = 〈λ! / c / α?〉 ∈ (Σ! × C × Σ?), where Σ! is from the
BA A1BA of a device and Σ? is from the BA A2BA of
another device. Moreover, we impose the event is not in
the alphabet of the commanded device: λ! ∈ Σ!

BA1 ∧ λ! 6∈
Σ!
BA2.

4.1.2 Event Condition Goal

An Event Condition Goal (ECG) rule noted 〈λ! / c / γ〉 is
given by the event λ!, the condition c and the goal γ. A
goal γ is a state s ∈ l where l ∈ L and L ∈ ABA with
ABA = 〈D,Θ, L, l0,Σ, T 〉 the BA of the commanded de-
vice. A state is defined by a location and the values of V .
The RA ARA corresponding to an ECG rule 〈λ! / c / γ〉 is
deduced from the BA ABA of the commanded device. The
RA contains the stable locations of BA, the output actions
of the BA from a stable location to another stable location
and all reflex executions from any location to the goal (see
Figure 4).

4.2 Constraint Expression

The constraints are used to restrict the behavior of a de-
vice. The expression of a constraint can be written in many
logic languages. In this paper, the constraints are only ap-
plied to the variables vi such that vi ∈ V and only the com-
parisons between one variable and a constant are allowed.
The comparison operators used are (<,>,≥,≤,=, 6=) and
the Boolean algebra (∨,∧,¬) is used to link the compar-
isons.

Let us recall that a device can be commanded by another
system. Thus, the device can violate the constraint. In this
case the DS must correct the state of the device to warrant
the constraint. To define this correction, a RA is built from
the BA of the device and the constraint on this device.

The RA contains the stable locations of BA that satisfy
and do not satisfy the constraint and the output actions of
the BA from a stable location to another stable location.
The locations of the BA that partially satisfy the constraints
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Figure 4. RA of T&T window commanded by
the button with ECG 〈b etat2()!/ > / valf = 50〉.

are split in two: satisfying and not satisfying the constraint.
In this way, in the RA a location satisfies either or not the
constraint. Each location that does not satisfy the constraint
is duplicated such that only one output action comes into
it and each duplicate is an unstable transient location. The
goal of the RA is to define the actions to come back into the
previous location that satisfies the constraint when this one
is broken. Thus, in the RA, for any output actions that go
into a location that does not satisfy the constraint, a reflex
execution comes back into the previous location that satis-
fies the constraint (see Figure 5).
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Figure 5. RA of constrained T&T window with
valf <= 10.

A particular case can appear if the system starts in a con-
strained state. In this case, there is no previous location that
satisfies the constraint. Thus, a location l that contains all
states that do not satisfy the constraints is added to the tran-
sient locations and to the possible initial location, a rescue
state that satisfies the constraint is defined and reflex execu-

tions are defined to go from l to the rescue state.

5 Conclusion and Future Work

In this paper, models to manage by Behavior Automata
(BA) and to interconnect by Reflex Automata (RA) the be-
havior of different devices in an asynchronous network are
presented. The behavior of a system is defined by the be-
havior of each device, constraints on these devices and the
interactions between devices. The BA is used to model the
possible behavior of a device. The RA is used to describe
the reflex commands that the Domotic System (DS) must
execute. The RA is built from a BA and a constraint or a
conditioned event.

In this paper a constraint is applied on only one device
and an event links only two devices. In the future work, the
definitions of constraint on many devices and event reac-
tions on more than two devices are planned. Another point
is that in this approach a goal is a state. As one of the ob-
jectives is to reach a goal expressed by a human expression,
a goal as location will be studied.
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