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Abstract—This paper advocates for the introduction of perfor-
mance awareness in autonomic systems. Our goal is to introduce
performance prediction of a possible target configuration when
a self-* feature is planning a system reconfiguration. We propose
a global and partially automated process based on queues and
queuing networks modelling. This process includes decomposing
a distributed application into black boxes, identifying the queue
model for each black box and assembling these models into a
queuing network according to the candidate target configuration.
Finally, performance prediction is performed either through
simulation or analysis. This paper sketches the global process
and focuses on the black box model identification step. This
step is automated thanks to a load testing platform enhanced
with a workload control loop. Model identification is based
on statistical tests. The identified models are then used in
performance prediction of autonomic system configurations. This
paper describes the whole process through a practical experiment
with a multi-tier application.

Keywords-Autonomic systems; performance; automatic mod-
elling; queuing network model; load injection

I. INTRODUCTION

A. Autonomic computing and performance management

Management of modern distributed systems is becoming

increasingly complex and costly. Autonomic computing typ-

ically addresses this issue by providing systems with self-

management capabilities. A common approach to building

self-managing systems has been sketched by [1], through the

well-known MAPE-K control loop (Monitor, Analyze, Plan,

Execute - Knowledge): some self-* features (e.g., optimiza-

tion, configuration, healing and protection) are implemented in

the system in the form of feedback loops that result in system

reconfiguration plans to be executed when special undesired

situations are met. Reconfigurations typically result in remov-

ing, adding or replacing one or several system constituents,

thus resulting in a new configuration. Here, we consider

changing constituent parameters (e.g., tuning) as a component

replacement inasmuch its behavior changes, especially from a

performance point of view.

Reconfiguring a distributed application may result in per-

formance changes, ranging from anecdotal to dramatic. In the

case of critical or Service Level Agreement-ruled systems,

it may be quite relevant to evaluate the performance of a

candidate new configuration before actually deploying it. This

1This work is supported by the French ANR, through the Selfware and
SelfXL projects, and ANRT.

remark applies to any self-* feature-driven reconfiguration,

but it particularly applies to self-optimization. This sort of

feature may typically compare different candidate configura-

tions, looking for an optimized trade-off between an expected

performance level and operational constraints and costs.

This paper deals with the introduction of a strong

performance-awareness in autonomic systems, in order to

drive the Analyze step of the MAPE-K loop with relevant

performance Knowledge, combined with performance analysis

or simulation capabilities. To do this, our approach consists in

relying on performance models of a distributed application’s

constituents, and then composing these models according to

interactions between constituents, to get a performance pre-

diction of an application configuration. We typically address

distributed applications where some constituents may be repli-

cated in order to increase the overall application performance

(e.g., multi-tier web applications). In this introduction, we

sketch the global process, as presented in [2].

B. Identifying black boxes

The first roadblock we meet is getting the constituents’

performance models. Applications, middleware and systems

based on common information technologies typically come

with poor performance-related specification, if any. At a cer-

tain granularity, the inner architecture of some constituents

is either so complex or under-specified that trying to infer a

performance model for each one would practically take far too

much effort. However, a certain granularity of decomposition

seems to be humanly affordable, at least for distributed appli-

cations. For instance, an HTTP front-end, an EJB container

and a database is a straightforward level of decomposition in

the context of multi-tier Java EE applications. Based on this,

our approach is two-fold:

1) decompose a distributed application into constituents,

called black boxes, with a relevant granularity,

2) automatically get a performance model of each black

box through an experimental stimulus-response obser-

vation principle.

The relevant granularity level is a trade-off between the

decomposition feasibility (with regard to available information

and complexity) and the final model accuracy and sizing

opportunities. The major criterion is sizing opportunity: if one

sub-element of a black box can be replicated to increase the

workload capacity of the sub-feature it supports, then there is
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a big motivation in decomposing this black box into sub-black

boxes. Accuracy is another motivation for decomposition,

since a queuing network model will be closer to reality than a

single queue model representing the same element. Last, the

black boxes model identification process may be quicker and

simpler, for smaller black boxes, and may have less weird

behaviors than for bigger ones.

A black box is a constituent whose content is unknown.

You may only know its external interfaces and be able to

invoke their operations, and observe the outputs resulting from

your invocations. This black-box may (or may not) provide

an interface to give some information about its state. It runs

in an execution environment whose resources usage may be

observed (CPU, RAM, network bandwidth, etc.). We partic-

ularly address software black boxes running on an operating

system. Commercial, off-the-shelf software elements, as well

as complex open source middleware, would be typically black

boxes. In case of distributed software, network interactions

give decomposition opportunities.

C. Automatic model identification

Once we have decomposed the global system into black

boxes, we need to get a performance model for each of

them, and then to combine these models into a single one

representing the global system. To achieve this, we choose

to model black boxes as queues, and the global system as

a queuing network. The idea is that we can experimentally

identify queuing models that best represent the performance

of black boxes, and then build the resulting queuing network

for performance prediction. Model identification is based on

non-parametric statistical tests. This enables to determine the

best distributions fitting service times and inter-arrival times.

The other idea is to get experiments on black boxes auto-

matically performed by a load testing platform, enhanced with

self-regulated load injection capabilities [3]. The workload is

automatically adjusted according to measures and policies that

define workload steps, levels and saturation criteria. There

are three reasons for this step-by-step increasing workload

injection. First, we have no knowledge and we make no

assumption about the maximum capacity of each black box:

we start with a minimal capacity assumption, and then we

gradually increase the assumed capacity. Second, we prevent

load injection from actually reaching a critical saturation level

that would result in a black box crash, with a possible necessity

to reboot and restart. Third, we want to observe the black box

in permanent, stable states, which practically requires to have

these steps.

This experimental process uses research results in terms of

component-based architecture for building autonomic comput-

ing systems [4].

D. Performance prediction

Once the Knowledge part of our autonomic system is fed

with the black boxes queuing models, the Analysis function

of any self-* control loop is able to evaluate performances of

possible target configurations. This prediction may be based on

G/G/K models

M/G/K models

M/M/K models

-

+

+

-

TractabilityAccuracy

Figure 1. Accuracy versus tractability

queuing network simulation or analysis. When several queuing

model candidates have been successfully identified for a single

black box, the actual model selection may be driven, on the

one hand, by its accuracy, and, on the other hand, by its ability

to be quickly analyzed or simulated. The more accurate is the

model, the more difficult is the analysis (see Figure 1).

As a matter of fact, the efficiency of this performance

prediction influences the speed and effectiveness of the self-*

control loop. The global process is summarized by Figure 2.

This paper develops the second step (model identification) of

the approach, as a continuation of [2]. An example of the use

of identified queue models in performance prediction is given.

This paper is organized as follows: first, we position our

work with other related work in Section II. Then, Section III

describes how the self-regulated load injection process is

achieved: we compute the duration of an injection period

and explain how to estimate stabilization time, injection step

duration, and sampling period. In Section IV, we detail the

black box model identification process by first presenting inter-

arrival and service sampling, and then by explaining how to

determine the distribution shape and the whole identification

process. We also present how to estimate, from the observed

parallel processing level of a given black box, the correspond-

ing queue model’s number of servers. In Section V, we show

how to use identified models in performance prediction. We

show a practical application of our model identification process

in Section VI on a typical use case and we give experimental

results. Finally, we conclude in Section VII and give some

open questions and perspectives.

II. RELATED WORK

Several works have been proposed to model systems for

autonomic computing purposes. Some authors used regres-

sion models [5] for transactional systems, but most of them

proposed queuing networks as predictive models [6], [7], [8],

[9]. Kamara et al. [7] modelled a 3-tiers architecture with a

single queue; Rafamantanantsoa et al. [8] described a simple

web server with an M/G/1/K-PS queue model. The parameters

of this model (queue capacity and mean service time) are

estimated by the maximum likelihood technique, given data

obtained by extensive experiments. Other proposals [9] used

queuing networks instead of a single queue model. This

last modelling seems to be more appropriate for distributed

systems.
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Figure 2. Performance prediction of a distributed application configuration

Begin et al. [10] approximate the measured behavior of

a variety of systems by selecting and calibrating a limited

set of queuing models. More recently, using a black box

approach, Menasce [11] addresses the problem of finding an

unknown subset of service demand parameters in queuing

network models, given the known values and given the values

of response times for all workloads.

Woodside, Zheng and Litoiu [12] worked also on tracking

parameters of queuing network models for an autonomic

system. They used extended Kalman filters, while integrating

various kinds of measured data such as response times and

utilization. Using Kalman filters is quite valuable since they

are known to be predictor-corrector estimators: they make the

obtained model optimal when dealing with error covariance

minimization.

These proposals are interesting, however autonomic systems

need to be dynamically analyzed with precision, to be able to

choose the best solution when a problem occurs.

This fact led us to estimate an accurate queuing model, that

might represent the observed system: we propose to model

inter-arrival and service times, as well as the number of

servers. We don’t use for that Kalman filters because they

are not suitable for our approach: first, Kalman filters are not

sufficient in our case, since we estimate shapes of distributions.

Second, convergence of these filters is not guaranteed for a

number of queuing models, which makes their use without a

predefined model more difficult in an autonomic approach.

Rather, we can identify distributions with more precision,

using non-parametric statistical tests. Most of our experiments

show more Lognormal and other distributions than exponential

distributions, which were used in most work.

Our approach is thus a generalization of previous methods

proposed in literature. It also provides rich distributions mod-

elling systems behavior, and giving more information. The

final contribution of this paper is an implementation of the

developed approach in a prototype for modelling multi-tier

autonomic systems and anticipating their performances.

III. SELF-REGULATED LOAD INJECTION

Our approach relies on injecting a step by step increasing

workload (see Figure 3). To allow estimation of a coherent

model, we inject a workload composed of a single traffic type.

Basically, this consists in automating a benchmarker work,

trying to find the performance limits of a system through

load testing. It injects a first load level, observes the system

behavior (response time, resource usage. . . ) and decides the

amount of the next workload step. It repeats the procedure

until reaching - or more probably overpassing - a workload

high limit, beyond which the system becomes unstable or the

delivered quality of service is no more satisfactory.

To automate this process, we rely on a load injection

framework: the CLIF [13] framework provides injectors, for

generating a workload modelled as virtual users (vUsers) and

measuring requests response times, and probes, for measuring

usage of arbitrary computing or networking resources. More-

over, we need to define an injection policy specifying several

parameters, mainly: the workload level in each step (injection

step), the length of an injection period, the time required to

get the system in a stable state (stabilization time), the System

Under Test saturation limits where the load testing process

must stop.

In the remainder of this paper, we use the Kendall no-

tation [14] of an elementary queuing system, denoted by

T/X/K where T indicates the distribution of the inter-arrival

times, X the service times distribution and K the number
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Figure 3. Model identification during a ramp of load injections

of servers (K ≥ 1). Note the number of servers represents

the observed parallel processing capability and not the actual

number of physical computers or processors. This capability

practically depends on the multi-threading support and on

the computation profile (e.g., CPU-intensive or Input/Output-

intensive). So, it is both hardware-dependent and software

dependent (operating system, middleware, application). As a

simplification, we still consider it as an integer number in this,

but it is more likely a decimal number.

A. Injection policy

The main issue related to self-regulated injection is to deter-

mine automatically the injection policy parameters defining the

steps of increasing workload (see Figure 3). These parameters

are computed at runtime, step by step.

1) Estimation of maximal load: An initial load injection

phase is undertaken to estimate the maximal supported load
ˆCmax. In this phase, we load our system with markovian

interarrivals requests of one virtual user. We collect response

times and compute a first approximation of ˆCmax, as 1
µ

,

µ being the service rate. This result comes from the fact

that, when dealing with one customer arriving in an empty

queue (no concurrence), the mean waiting time is null (W=0),

leading to the following mean response time:

R = W + X = X = 1
µ

When the queue model is M/G/1, the arrival rate of requests

converges to µ. An example of this convergence is depicted

in Figure 4, obtained when experimenting our example. The

value of ˆCmax is experimentally corrected when the estimated

number of servers K increases (see Section IV-D).

2) Injection step: The load injection step should be care-

fully defined, as a small step may result in a huge experimental

time, whereas a big step may brutally saturate the system. We

use an additive increase while checking if the experiment is

close to the value of the estimated maximum load ˆCmax. The

µ 2µ

X
0
=1/µ

Mean response time

M/G/1 M/G/2

Arrival rate

Figure 4. First estimation of maximal load Cmax

increment is defined through a decomposition of the estimated

maximum workload into a user-set number of iterations. The

greater this parameter is, the more workload steps will be

performed, thus giving more accurate information, but taking

much more execution time.

3) Rising period: After an injection phase, the load is

increased with an increment and submitted. To avoid a mal-

functioning of the system due to a big injection step, we

choose to inject the increment of requests gradually, drawing

thus a ramp. The rising period is the period during which

the injection of a new load increment is done. In practice,

injecting 10 vusers/sec is acceptable. The rising duration is

then automatically computed as a function of the injection

step, while maintaining 10 vusers/sec.

4) Sampling period: This should be computed such that

the system behavior remains stationary and the sampling is

sufficiently large to get good confidence in measures. Rai Jain

in [15] proposes a formula for determining the sample size

n required to achieve a given level of accuracy r% and a
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confidence confidence interval of 100 ∗ (1 − α)%:

n = (100zσn

rm̄
)2,

where z is the normal variate of the desired confidence level

(for a 95% confidence interval, z ≈ 1.96), m̄ is the mean value

of the parameter to estimate and σn stands for the sample

standard deviation.

B. Estimation of the stabilization time

When collecting measures, it is important to distinguish the

transient and stationary periods. The variance of measured data

gives a first insight in system stability. This is not sufficient as

there may be measurements peaks when some phenomenon

like the garbage collector appears. Thus, a combination of

theoretical and experimental methods is required.

We estimate the stabilization time at each injection step,

as the convergence time of the Markov chain [14], [16]

underlying the associated queue model. We restrict ourselves

to Engset models.

In other words, the stabilization time ST is considered

as the time required to get the equilibrium (stationary) state

probabilities, denoted as the probability vector π, when the

Markov chain is ergodic.

It can be computed by studying the transient behavior of the

system. As the queue model of the step (i) is not yet defined,

we rely on the queue model (denoted model(i−1)) determined

in the previous step (i-1). We compute ST by:

(1) deriving the transition probability matrix P of

model(i−1), which has a dimension equal to MxM, M being

the amount of load submitted in step (i);

(2) obtaining the probability vector:

π(n) = π(n−1)P = π(n−2)P 2 = . . . = π(0)P n

,

π(0) being the initial vector and n the number of iterations

required to reach the equilibrium state;

(3) computing the stabilization time ST as:

ST = n
λ+µ

,

λ being the inter-arrival parameter of step (i) and µ is

approximated by the service rate parameter of model(i−1).

As we base on model(i−1), which is not necessarily the

model of step (i), we correct the obtained stabilization time

by adding an error ǫi, computed experimentally by observing

the variation coefficient of measures collected in step (i).

IV. IDENTIFICATION OF THE PERFORMANCE MODEL OF A

BLACK BOX

As previously said, a black box is modeled with a queuing

model. Identification of such model requires to define the

distribution of inter-arrival times, the distribution of service

times and the number K of servers. The identification of these

distributions requires first to capture adequate measures from

the injection framework, then deduce a sample to analyze,

i.e., an interarrival sample and a service sample. The obtained

samples are submitted to statistical tests from which is es-

timated the corresponding distribution shape. Parameters of

the identified distributions (interarrival and service) are also

estimated to complete the definition of final models.

A. Inter-arrival sampling

This implies, for a distributed system, to identify the shape

of the inter-arrival process received on upstream of each black

box. The interarrival process of a black box depends, on one

side, on the rate of submitting requests to the global system

and, on the other side, on the system architecture. As a matter

of fact, we investigate inter-arrival times distribution of a black

box only when being in the context of a configuration of the

system to which it belongs. To achieve that, load injections

are submitted to the system and arrival times of requests

are captured for each black box. For a given black box, we

compute inter-arrival times, obtaining the sample T .

B. Service identification process

This process consists in submitting load injection to the

black box (see Figure 3). The workload is increased through

several steps, until reaching the maximal estimated load ˆCmax.

As many theoretical results exist for the M/G/1 and M/G/K

models, we choose to inject requests through exponential inter-

arrival times, obtaining at worst a M/G/K model.

Let us detail this process. It is done through two major

phases : an initialization phase and an identification phase.

1) Load injection steps: Two major steps are followed:

a) Phase 1: Initialization: This phase consists in submit-

ting to the black box a flow of similar requests representing

only one customer. We measure the response time mean,

denoted R0, during the sampling period computed as explained

in Section III-A4. As a single customer uses only one server,

we can infer that the black box behavior follows the M/G/1

model in the worst case (see Section III-A1). Hence, the value

of service rate during this phase, µ0, is used to get the maximal

estimated load Cmax and the next injection step.

Note that a realistic traffic typically involves a mix of differ-

ent kinds of requests, e.g. user connection and authentication,

requests involving or not database read or write operations, etc.

In fact, we could also address such heterogeneous traffics, as

long as response times are of the same order of magnitude

from one request kind to another. Our steps might last longer

because of the higher service time variability, but the resulting

average service time would be still representative of the traffic

mix. We would assume that the mix is the same whatever the

workload level. Experiments about this would be an interesting

complement to our work.

b) Phase 2: Identification: This phase is carried out

through several steps , where each step (i) consists of:

1) Submitting a self-regulated load injection Ci following

a Poisson distribution.

2) Waiting for stabilization (stabilization time already com-

puted as shown in Section III-B) and collecting experi-

mental measures during the computed sampling period:

response times, interarrival times and utilization of the

black box for this workload step.
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3) Inferring service times (Xk)1≤k≤n from the samples

of response times (Rk)1≤k≤n and interarrival times

(tk)1≤k≤n.

4) Removing aberrant values from the service time sam-

ples. This is done by removing a fixed percentage

(for instance 5%) of greater values. These great values

may be considered as experimental measurement errors,

resulting, for instance, from by some phenomena such as

the occurrence of garbage collector on the load injector.

5) Identifying the shape of the service times sample using

statistical tests.

6) Computing the injection parameters for the next step:

injection step and the stabilization time.

2) Stop condition based on saturation checking: During the

load injection steps, it is necessary to test if the black box is

getting saturated to stop the experiment. This is done by mon-

itoring the black box state and detecting whether its utilization

reaches some predefined limits. In our context, we define the

black box utilization through computing resources utilization

(CPU, memory, JVM heap memory). This is achieved by

deploying a probe for each monitored resource. Load injection

is stopped as soon as one or several resources get(s) saturated.

Resource saturation is defined as reaching a given threshold,

determined by an expert of the system.

When the black box reaches the estimated maximal load

and no saturation appears, we correct the maximal load and

continue load injection tests, and so on, until saturating the

black box (see Section IV-D). This technique of reaching

maximal load level allows us to capture all possible behavior

of the box against all possible load levels. Hence, the obtained

model is the closest and the best one fitting the service offered

by the black box per load level.

3) Service sampling: To obtain the service sample of an

injection step, the load injection framework delivers several

measures. We use mainly response times (Rk)1≤k≤n, interar-

rivals (tk)1≤k≤n and utilization U of all resources. We need

also to estimate the scheduling policy to be able to compute

the service sample. So, in a first time, we assume that the

black box relies on a process sharing (PS) scheduling policy,

then when getting close to saturation, the scheduling policy

becomes FIFO. In both cases, service times (Xk)1≤k≤n are

computed as follows:

1) For a PS policy:

Xk = Rk ∗ (1 − λ ∗ X) [14]

where λ is the interarrival rate used during the load

injection and X is estimated with the fix point algorithm

using the estimated X of the previous step as an initial

value.

2) For a FIFO policy: We use an extended result relating

service times (Xk)1≤k≤n, response times (Rk)1≤k≤n

and interarrival times (tk)1≤k≤n [14]:

Rk = [Rk−1 − tk]+ + Xk

This result is valid for a model using one server and

a FIFO policy. So, if we get to identify, in step (i),

a model characterized by K servers (K>1), this result

cannot be used. To generalize this result, we propose to

use a similar result:

Rk = [Rj − tj,k]+ + Xk

where j corresponds to the previous request that quitted

the server, which served the kth request, and tj,k is the

interarrival between the jth and kth requests. The jth

request is determined by recomputing iteratively service

times (Xk)1≤k≤n, beginning from the first served re-

quest and using the Rj and tj,k computed from collected

measures.

C. Distribution shape identification

To automatically determine the shape of inter-arrival times

and service times distributions, we use a statistical test based

approach, which selects the distribution that fits well the

samples.

1) Identification using statistical tests: The statistical

goodness-of-fit hypothesis test is a process that consists of

making statistical decisions using experimental data. Several

hypothesis testing approaches exist. In our case, we use the

Kolmogorov-Smirnov statistical test [17], since it is appro-

priate to continuous distributions. We also use the Anderson-

Darling test, which is appropriate to distributions with heavy

queue.

However, these tests are only suitable for small samples

and cannot apply to large samples. To avoid this drawback,

we uniformly select a sub-sample from our data, on which

we perform the test. Distributions that give a p-value (output

value of a statistical test) greater than 0.1 are selected as good

distribution representatives for our measures.

2) Estimating distributions shape: To seek the most appro-

priate distribution fitting an inter-arrival/service sample, we

test several distribution families, known in the literature as

distributions appearing naturally in computing systems [18]:

exponential family, heavy-tail distribution family, etc.

We begin by choosing a distribution from the exponential

family. We estimate parameters of each distribution using a

Maximum likelihood estimator. We then keep distributions that

give a p-value greater than 0.1.

To achieve that, we compute the variation coefficient CV 2

of the sample and its confidence interval. Depending on its

value, we test a set of distributions. If the confidence interval

of CV 2 contains 1, we test the exponential distribution. If

CV 2 ∈]0, 1[, we test the hypoexponential(k) distribution, the

Erlang(k) distribution and the gamma distribution. If CV 2 ∈

]1,+∞[, we test the hyperexponential(k) distribution, the

Uniform, the Normal, Lognormal, and Weibull distributions.

For each distribution d, we analyze a sample S as follows:

• If necessary, we make transformations (for instance a

shift) on the sample (Sk)1≤k≤n to fit distribution d,

• We estimate parameters of d with a Maximum likelihood

estimator.

• We choose a small sample S∗ from (Sk)1≤k≤n.

• We perform a statistical test for S∗ and d with estimated

parameters. As previously said, we choose to work with

the Kolmogorov-Smirnov test. We repeat several times
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this statistical test, and take the mean of obtained p-

values, so as to ensure a correct p-value result.

• We then discard distributions whose statistical test gives a

p-value less than 0.1. The set of remaining distributions,

denoted L, is considered as the possible behavior of the

black box service, resulting in a black box model M/X/K

specified by several service distributions.

D. Estimating the number of servers

The number of servers (parallel processing capability, see

section III) observed for a black box is determined experi-

mentally. When reaching the estimated maximal load ˆCmax,

we observe the black box utilization. If it indicates the black

box is saturated, the number of servers remains 1. Otherwise,

we progressively (step-by step) increase the load and check if

saturation is reached. If no, we correct the estimated maximal

load Cmax = k ∗ ˆCmax and increment the assumed number

of servers by 1. We resubmit new increasing load injections.

We observe again the black box utilization and repeat the

procedure until reaching saturation.

If during step (i), we identify a number of servers K>1, we

need to correct models of previous steps, so we repeat samples

analysis of these previous steps, by recomputing the service

sample and re-identifying the models of each step.

Note that the estimation of servers number representing

a black box is done independently from distributions shape

estimation. The final estimated number is deduced at the

end of the step-by-step process (at saturation), while shape

distributions are estimated at each injection step.

E. Validation of the black box queue model

The identification process produces one or several candi-

date queue models possibly corresponding to different load

levels. These models are validated by comparing empirical

performance measures with theoretical ones, typically mean

response time, mean waiting time and throughput.

V. USING IDENTIFIED MODELS IN PERFORMANCE

PREDICTION OF AUTONOMIC SYSTEMS

Let us consider a system configuration C as a possible

solution for ensuring an autonomic feature. The goal is to

be able to evaluate performances of C before its application

on the system.

To reach this objective, the first step is to feed the autonomic

system with its black boxes queuing models, following the

identification process sketched in Section IV: a model repos-

itory for the system is hence created. Then, the global model

of the configuration C is built, so that to launch the Analysis

function of any self-* control loop and predict performances

of C. This is done by picking from the model repository and

by composing them.

A. Composition of black box models

A queuing network is entirely defined by the number of its

nodes, the parameters of each node (queue) and the routing

probabilities between nodes (probability that a request is

transferred to the jth node after service completion at the

ith node). To compose the set of black boxes models, it is

important, in one side, to get the topological structure of the

interconnection, and in the other side, to describe transitions

between the models in this topology.

1) Transitions between black boxes models: To compute

the routing probabilities between nodes, we rely on traces

of incoming and outgoing traffic of each node. We propose

so to conduct a typical experimentation, during which we

capture input and output requests of each black box. The

capture is done using log files and is specific to each software

product. The number of outgoing requests of each black box is

deduced from this capture and so are the incoming requests to

the corresponding black box addressees (notice that common

log files give generally for each incoming request the sender

address). A ratio of the traffic distribution between the black

boxes is then computed, resulting in the definition of routing

probabilities.

Node A

Node B

Node C

A

C

B

18000

10000

8000

p
1
=0.56

p
2
=0.44

Figure 5. A black box interconnection example

Let us take an example of a system S (Figure 5), made

of three black boxes A, B and C, where A is linked to B

and C and each of B and C are only linked to A. In this

case, we compute the number of outgoing requests of A and

the number of incoming requests of each of B and C. Let us

say there are 18000 outgoing requests for A, 10000 incoming

requests for B and 8000 incoming requests for C. The routing

probabilities are p1 = 10000/18000 = 0.56 between A and B

and p2 = 8000/18000 = 0.44 between A and C.

2) Building the global model of a system: Once the transi-

tion probabilities between black boxes queues are obtained,

we compose the queues and get a queuing network, the

global model of the system. In our models, we deal only

with open networks, as we study distributed infrastructures

where requests are received and leave the system after service

processing completion.

B. Analysis of the global model

To predict performances of the configuration C, we solve

the obtained queuing network model using a specific algorithm

allowing the computation of theoretical performance parame-

ters. Typical parameters are:

(i) for the whole system: mean response time R, throughput

D and mean customer number N ;

(ii) for each queue Qi: mean response time Ri, mean number

of customers Ni and utilization Ui.
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The resolution algorithm to use depends on the complexity

of queues composing the whole model :

• If the queuing network is composed of only M/M/K

models, the exact MVA (Mean Value Analysis) algorithm

is the most suitable to use [14], [19]. This algorithm is

suitable for many systems as the markovian distributions

are known in the literature to appear naturally in various

systems [18].

The MVA method allows to compute the mean values

of parameters of interest such as the mean waiting time,

throughput and the mean customer number at each node.

Another algorithm to use is the AMVA algorithm [14],

[19], which is an approximation improving the computa-

tion time of MVA.

• In other cases and depending on the structure of the

resulting queuing network, we use the appropriate algo-

rithm such as the method of Raymond Marie [20], [21].

This algorithm has been defined as an approximate so-

lution for studying the asymptotic behavior of a network

of queues with a general service distribution. When the

network is composed of different types of queues, we

propose to compute performance bounds. In the worst

case, when analysis is impossible, we use simulation to

determine global performances.

VI. ILLUSTRATION

The automatic model identification process is currently

implemented as a framework prototype. This framework pro-

vides: (i) an automated benchmarking controller, based on

CLIF [13], for performing the self-regulated load injection

steps, (ii) a model identification tool, based on Matlab/R statis-

tical environments [22], [23] and, (iii) an editor for composing

identified queue models and launching analysis/simulation of

obtained queuing networks for performance prediction.

Web 
Container

EJB 
Container

MySQL 
Server

Figure 6. Use case: SampleCluster JONAS application

To illustrate the steps of our identification process, we

experimented a three-tiers Java EE application, called Sam-

pleCluster, that runs in the JONAS application server, an

open source Java EE implementation developed by the OW2

consortium [24]. This application was developed as a testing

application of a JONAS cluster. This cluster is composed of a

Tomcat web container server, an Enterprise Java Beans (EJB

3.0) container and a MySQL database storing EJB sessions

information (see Figure 6).

The system is decomposed into three black boxes: the Web

container tier, the EJB container tier and the database tier.

This first level decomposition matches exactly the multi-tier

architecture and this is very useful to operate an adequate

and good system sizing. These black boxes are modeled using

our automatic identification process. To inject requests to a

black box, we use CLIF load injectors. We use a load injection

scenario featuring virtual users whose behaviors represent real

user behaviors. Network latency is considered as negligible

for these experiments, since we operate with a high-speed

local area network (Gigabit Ethernet), whose latency order

of magnitude is microseconds. To get resources utilization

measures and detect system saturation, CLIF probes have been

used for CPU, JVM heap memory and RAM. We defined the

black box saturation limits as 80% for the CPU (high limit),

80% for RAM (high limit) and 5% for the JVM’s free heap

memory (low limit).

To model a black box, it must be isolated from the other

black boxes. Isolating the database tier is straightforward, since

it is the last tier and it does not call any other black box.

Isolating the Web and EJB tiers requires more work:

• either develop respectively an RMI plug and an SQL plug,

i.e., a fake RMI or SQL server that accepts requests and

give responses in place of the real server, in deterministic

response time that can be subtracted from the black

box measured response times. This technique requires

some non-trivial programming, since responses must hold

correct information. A record-and-replay solution may be

applied, by observing requests and responses with the

real server and then replaying known responses on known

requests with the plug. This is not too complex to achieve

with text-based protocols (such as SQL) when no socket

secure layer is used (cf. encryption), but it is much more

complex with binary protocols like RMI. Moreover, plugs

must be benchmarked in order to know its response time

and to be able to compute the black box service times;

• or follow a step-by-step approach, starting the modeling

process from the downstream black box (the database

black box in our example). In next step, we run the

modeling process on the previous black box (EJB con-

tainer) and, thanks to the model obtained during the first

step, we subtract response times of the last box to the

measured response times in order to be able to compute

the corresponding real service times. Then, we iterate for

next steps until the first tier is reached.

We used the second solution (step-by-step) for practical

reasons: not only do we avoid developing a plug, but we

also avoid benchmarking the plug, while in the step-by-step

solution, next black boxes are benchmarked de facto.

In the following, we present modelling results for the three

black boxes, then we give performance prediction of the

system and an example of fulfilling an autonomic feature.

A. Modeling the database black box

The database black box runs on a Linux server with two 1.4

GHz PIII processors, and 1 GByte of RAM. We used a Linux
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Load Identified Model(s) Parameters

1 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.010, sigma=0.089

6 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.034, sigma=0.276

11 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.051, sigma=0.333

16 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.020, sigma=0.396

21 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.030, sigma=0.421

26 M/Hr2/4, M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.053, sigma=0.428

31 M/Hr2/4, M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.033, sigma=0.464

36 M/Hr2/4, M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.074, sigma=0.476

45 M/M/4, M/Hr2/4 p=0.055,mu1 = 0.945,mu2 = 465.9
54 M/M/4, M/Hr2/4 p=0.036,mu1 = 0.964,mu2 = 239.3
63 M/M/4, M/Hr2/4 p=0.064,mu1 = 0.936,mu2 = 453.0
72 M/M/4, M/Hr2/4 p=0.060,mu1 = 0.940,mu2 = 419.5
86 M/M/4, M/Hr2/4 p=0.062,mu1 = 0.938,mu2 = 452.0

100 M/M/4, M/Hr2/4 p=0.065,mu1 = 0.935,mu2 = 510.8
119 M/M/4, M/Hr2/4 p=0.040,mu1 = 0.960,mu2 = 231.0

Table I
MODEL IDENTIFICATION RESULTS FOR THE DATABASE BLACK BOX

server with two 2.8 GHz Xeon processors and 2 GBytes of

RAM as a load injector. The automated self-regulated load

injection phase was carried out within 14 workload steps,

reaching more than 120 virtual users in 5 minutes on average.

The saturated resource was the CPU with a 82% usage.

The model identification tool got measures and computed

the corresponding service time samples for each workload

step. Each service time sample was analyzed using goodness-

of-fit tests and graphical methods. Various distributions were

identified with their parameters, including the Exponential,

Hyper-exponential with two stages, Log-normal, Gamma and

Weibull. The candidate models identified during experimen-

tation are given in Table I. Notations for this table I are the

following: λi refers to the interarrival rate, µi the service rate

and Xi its mean service time. LN refers to the Lognormal

distribution, Hr2 to the Hyperexponential with two stages and

Wbl to the Weibull distribution.For each load level, we select

the most appropriate model (given in bold characters) accord-

ing to the statistical tests best results (best p-values and fitting

scores). We also give the best model’s parameters (Parameters

column): λ is the inter-arrival rate, µ the service rate for the

exponential distribution (µ1 and µ2 for the Hyperexponential

distribution and p is its probability to go to a stage), µ, σ are

the shape and scale parameters of the Lognormal and Normal

distributions, and a,b are the Γ distribution parameters.

As the table shows, for light and medium loads (load

levels varying from 1 to 36 virtual users), we select the

M/LN/4 model, as the statistical tests gives greater p-values

for the lognormal distribution. For higher loads, we select

the M/Hr2/4 model. Graphs of Figure 7 show service times

histograms with identified fitting distributions.

B. Modeling the EJB container black box

The EJB tier runs on a Linux server with two 2 GHz Xeon

processors, and 1 GByte of RAM. We used a Linux server with

two 2.8 Ghz Xeon processors, and 2 GBytes of RAM as an

injector machine. The automated self-regulated load injection

phase was carried out within 12 injection steps, reaching more

than 162 virtual users in 8 minutes and 0.2 seconds. Figure 8

shows the resulting load profile. The saturated resource was

the CPU with 86% usage.

The candidate models identified during experimentation are

given in table II. As the table shows, for light and medium

load (load levels varying from 1 to 118 virtual users), we

select the M/LN/3 model except for one load level (M/Γ/3
model for load=55 virtual users). For higher loads, we select

the M/Hr2/3 model. Graphs of Figure 9 show service times

histograms with identified fitting distributions.

C. Modeling the Web container black box

The Web tier runs on a Linux server with two 1.2 GHz

PIII processors and 1 GByte of RAM. We used a Linux

server with two 2.8 GHz Xeon processors and 2 GBytes of

RAM as an injector machine. The automated self-regulated

load injection phase was carried out within 6 workload steps,

reaching more than 16 virtual users in 7 minutes and 48

seconds. The saturated resource was the JVM heap memory

with 4% free space.

The candidate models identified during experimentation

are given in table III. As the table shows, the load levels

exhibit either an M/LN/1 or an M/Γ/3 model. Graphs of

Figure 10 show service times histograms with identified fitting

distributions.

D. Validation of the obtained global model

Our validation of the identified models is two-fold:

• First, we build a global queuing network model represent-

ing the SampleCluster application, using the three black

boxes’ models, and we perform its performance analysis

or simulation at a given load level (16.2 requests/s).

Then, we compare obtained performance values with

real measures at the same workload level, to check the

accuracy of our modelling.

• Second, we apply the automated load injection and model

identification process on the whole SampleCluster archi-

tecture considered as a single black box. Then, we do
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Figure 7. Service sample analysis for the database black box: light (left), medium (middle) and heavy (right) loads

Figure 8. Load profile resulting from self-regulated load injection performed on the EJB tier. The X axis is time, from 0 to 480 seconds. The Y axis is the
number of active virtual users, from 1 to 162. 12 steps have been completed, and the 13th step has been aborted because of system saturation detection.

Load Identified Model(s) Parameters

1 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.282, sigma=0.132

10 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.458, sigma=0.166

19 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.545, sigma=0.202

28 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.602, sigma=0.189

37 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.653, sigma=0.247

46 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.708, sigma=0.263

55 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 a=15.828, b=0.001

64 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.708, 0.306, sigma=0.476

82 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.739, sigma=0.363

100 M/Hr2/3, M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.818, sigma=0.376

118 M/Hr2/3, M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.792, sigma=0.381

136 M/M/3, M/Hr2/3, M/Norm/3 p=0.138, mu1 = 0.862, mu2 = 77.65
162 M/M/3, M/Hr2/3 p=0.094, mu1 = 0.906, mu2 = 27.25

Table II
MODEL IDENTIFICATION RESULTS FOR THE EJB CONTAINER BLACK BOX
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Figure 9. Service sample analysis for the EJB black box: light (left), medium (middle) and heavy (right) loads

Load Identified Model(s) Parameters

1 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 a=76.87, b=0.001

4 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 m=-3.254, sigma=0.133

7 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 a=62.92, b=0.001

10 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 m=-3.493, sigma=0.145

13 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 a=36.82, b=0.001

16 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 m=-3.679, sigma=0.166

Table III
MODEL IDENTIFICATION RESULTS FOR THE WEB CONTAINER BLACK BOX

Figure 10. Service sample analysis for the WEB black box: light (left), medium (middle) and heavy (right) loads

Performance index Estimated value for the system
decomposed as 3 black boxes

Estimated value for the system
seen as a single black box

Measure

Response time 52 ms 51 ms 52 ms

Throughput 16.2 requests/s 16.2 requests/s 16.2 requests/s

Clients number 0.87 0.80 -

Table IV
COMPARISON BETWEEN THEORETICAL AND EMPIRICAL PERFORMANCE INDEXES
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performance analysis of the obtained model at the same

load level and we compare with the queuing network

results and the real measures. The goal here is to check

the model accuracy, and especially to see if decomposing

the whole system into three black boxes gives more

accurate results than when considering a single model

for the whole system.

Table IV shows mean values of theoretical performance

indexes computed using the identified models of each tier and

of the system modelled as a single black box, at the load

level of 16.2 requests/s. We see that these values are very

close to the mean empirical values. The relative error for the

mean response time is 0.75% for the 3-tiers decomposition

and 2.47% for the single global model. This is a partial

validation of our full automated benchmark and process, on

this particular sample application. This result also shows that

accuracy is actually better with the 3-tiers decomposition,

and with a finer granularity (in our example, relative error

is 3.3 times as small), which partially validates the interest of

decomposing the global system into several black boxes and

building a queuing network.

E. Performance prediction for self-sizing feature

In this section, we sketch an example of autonomic reaction

to possible bottlenecks, which may appear in the SampleClus-

ter system. Whenever a bottleneck appears, we show how the

Analysis function of the self-sizing control loop is able to find

the best system configuration to apply, through performance

analysis/simulation of possible target configurations.

Of course, the notion of “best configuration” is a matter of

viewpoint. From the system user’s viewpoint, only quality of

experience criteria count, such as end-to-end response time,

service availability and reliability. From the system operator’s

viewpoint, a trade-off must be found between investment and

operating expenditures on the one hand, and client satisfaction

on the other hand. Request throughput capability is a good

criteria for the operator since it rules how many clients may

be simultaneously served by the system. Other criteria such

as usage of processor, memory or network bandwidth are also

of interest to optimally size the system’s resources. However,

the operator must also take quality of experience criteria (e.g.

end-to-end response time) into account. The best configuration

typically consists in minimizing the infrastructure costs, while

meeting a service level agreement with respect to given work-

load assumptions (number of users and resulting workload).

In our example, we assume that a load rate of 180 requests/s

is submitted to the system. Performance simulation of current

configuration gives a utilization equal to 1 for the Web

container black box, thus showing saturation of this tier, and

9778s global response time, i.e., 2.71 hours, which is an

unacceptable quality of experience.

In this case, the self-sizing control loop would launch a

decision process, which chooses the best solution. Possible

target configurations are depicted in Figure 11. Table V shows,

in one hand, global response time and global throughput for

the multi-tier system, and in the other hand, utilization indexes

of each tier. These performance results are computed by the

performance analysis/simulation function of the control loop.

We can see that solution 3 results in an improved global

response time and an enhanced throughput. This configuration

is hence the best one and more adequate to our multi-tier

system, and then will be chosen by the autonomic control

loop to be applied to the system.

VII. CONCLUSION AND FUTURE WORK

This paper addresses automated performance modelling of

software elements considered as black boxes. Our goal is to

be able to predict the performance of a distributed application

configuration composed of these black boxes, and to use it

in autonomic systems so that self-* features can integrate

performance awareness while they plan system reconfigu-

rations. Target applications are those being able to evolve

to more strengthened configurations, through replication of

constituents.

For this purpose, we have proposed a performance model

identification process for black boxes. The process automat-

ically delivers, for each black box under test, one or several

queuing models with their parameters, according to a number

of workload ranges. This process has been implemented as a

framework prototype, reusing the CLIF open source load test-

ing platform for workload generation and resource utilization

monitoring. The process usability has been assessed through

the experimentation of a three-tiers web application and the

first results are promising. A first, partial validation is shown

on an clustered Java EE sample application, showing a good

level of response time prediction accuracy, and even better

when the application is decomposed into black boxes instead

of considering it as a single black box.

However, some issues and difficulties were met:

• Isolating a black box from dependent servers (i.e., servers

that are subsequently invoked by the black box when it

processes a request) is mandatory but not straightforward

to achieve. Two solutions may be adopted:

(i) build plugs to replace dependent servers and charac-

terize their performance; this solution is specific to each

protocol, and involves programming, benchmarking and

possibly some network-level wire-tapping efforts;

(ii) follow a step by step approach starting from the final

black box in the architecture and using identified models

of the characterized tier. We preferred the latter solution

for it is simpler to implement. But, while the plug can

be designed for high performance (it is a fake server), a

real server may saturate before the tested black box. In

this case, the black box modelling will partially complete,

with missing high load steps, because of the bottleneck.

The solution is to replicate the dependent server causing

the bottleneck.

• We provide no particular support for capturing traf-

fic routing between black boxes. First, we consider a

simplified vision of the traffic, assuming a pipe call

topology between black boxes, with no feedback calls.
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Solution 1

Web 
Containers

EJB 
Container

MySQL 
Server

Load 
Balancer

Solution 2

Web 
Containers

EJB 
Container

MySQL 
Server

Load 
Balancer

Solution 3

Web 
Containers

EJB 
Containers

MySQL 
Server

Load 
Balancer

Load 
Balancer

Figure 11. Possible target configuration for solving the detected bottleneck
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Performance index Solution 1 Solution 2 Solution 3

Response time 4186 sec 1855 ms 1454 ms

Throughput 70.88 requests/s 106.80 requests/s 117.20 requests/s

Utilization Web 1 0.90 1 1

Utilization Web 2 0.90 1 1

Utilization Web 3 - 1 1

Utilization EJB 1 0.70 1 0.59

Utilization EJB 2 - - 0.60

Utilization MySQL 0.09 0.14 0.15

Table V
PERFORMANCE ANALYSIS RESULTS FOR POSSIBLE TARGET CONFIGURATIONS

However, this assumption is met with common multi-

tier applications, which are our key targets. Second, we

don’t provide a solution to capture multiple round-trip

calls between black boxes, in which an incoming call

in tier n may result in more than a single call to tier

n + 1. However, our queuing network builder supports a

multiplication factor, which makes it possible to specify

that a given request on black box n generates r requests

on black box n + 1.

• Our work considers a traffic of homogeneous requests.

Considering heterogeneous traffics with different request

kinds coming with highly variable service times would

require some more work. The issue is quite wide if

you consider also heterogeneous admission policies de-

pending on the request kind (priorities, preemption, etc.).

But this would be typically not the case for the class

of multi-tier applications we consider. Complementary

experiments would give valuable feedback about the

influence of requests heterogeneity in terms of service

times on the different stages of the process and the

accuracy of final performance predictions.

This work makes little assumptions about observation ca-

pabilities of black boxes: response time measurement as it

is experienced by a client, and monitoring utilisation of

host operating system resources. To improve and extend our

framework, it would take some more intrusive observation

capabilities. For instance, calls profiling and network analyzer

tools should be integrated to help capture information about

call routing or to help build plugs.

This work is essentially processor-centric, but it could be

extended also for modelling other resources utilization (e.g.,

network bandwidth, RAM, disk space or disk transfer rate).

Similar statistical techniques may also apply, but the set of

relevant candidate distributions are likely to differ. This would

be valuable for sizing each server, and not only the replication

level of tiers.

Finally, our future work concentrates on the autonomic

vision, since we plan to integrate this performance prediction

platform to an autonomic system manager, responsible for

checking or proposing new system configurations matching

given performance requirements. Within the SelfXL project

[25], applications of this “performance oracle" are foreseen for

anticipating and dynamically adjusting the number of virtual

machines required for a given service in a cloud computing

environment.
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