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Abstract: The Component Based System (CBS) paradigm is now

largely used to design software systems. In addition, performance

and behavioural analysis remains a required step for the design and

the construction of efficient systems. This is especially the case of

CBS, which involve interconnected components running concurrent

processes. This paper proposes a compositional method for modeling and

structured performance analysis of CBS. Modeling is based on Stochastic

Well-formed Nets (SWN), a high level model of Stochastic Petri nets,

widely used for dependability analysis of concurrent systems. Starting

from the definition of the system given in a suitable Architecture

Description Language, and from the definition of the elementary

components, we build an SWN of the global system together with a set

of SWNs modeling the components of the CBS and their connections.

From these models, we derive performances of the system thanks to a

structured analysis induced by the structure of the CBS. We describe

the application of our method through an example designed in the

framework of the CORBA Component Model.
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Introduction

Recent software systems are more and more being designed as a set of
components assembled together and interacting to achieve a common goal [4].
This compositional approach has captivated many industrial developers as it allows
higher maintainability, reuse, easier upgrade and dynamic reconfiguration. A system
is therefore seen as an assembly of components. Such architectures are known as
Component Based Systems (CBS). Since the mid’70, several component models
have been proposed in the literature [18, 31, 5, 29], and some of them are used in
industry.

In this context, a software component can be a source code unit (consumed at
development time and architectural design time), or a unit of deployment (machine
executable). It can also be a unit of versioning and replacement [32]. It is defined
as a unit of composition with contractually specified interfaces and explicit context
dependencies.

Although there is no unique definition of what is a component, authors
consider that the definition of a component is made of a behaviour (implementing
functionalities) and one or several interfaces. Interfaces are used to assemble
components, depending on their interaction, specifying required or offered services.
Components can be assembled or composed to form a software application or
system, according to their specified interactions.

Many design frameworks for CBS exist, each one being based on a component
model defining more or less precisely the semantics of the components and of
the assembly. To allow definition of a CBS, several component models have
been introduced, even for academic or industrial purposes. Among the large
number of component models proposed in the literature, either industrial or
academic, we may quote EJB, CCM, COM+/.net, Fractal, JMX, PECOS, Koala,
IEC61499,... [20, 16, 6]. For most of these models, an Architecture Description
Language (ADL) [15] allows us to describe an assembly of components. From this
description, a set of accompanying tools generate, at least, the templates of the
application code and perform some verifications such as data type compatibilities.

The component based approach is a smart approach providing significant
benefits. However, designers of CBS should have some assurance that the assembly
they define meets performances expected by users (for instance avoiding contention
and bottlenecks). Moreover, if large architectures of CBS are involved, such
properties are difficult to derive. So, it is necessary to develop methodologies and
tools allowing qualitative and quantitative analysis of CBS, to support designers in
their activities.

In this area, prediction methods for performance and behavioural qualitative
analysis of CBS are still scarce: [1, 2] used Labelled Transition Systems (LTS)
and model checking in order to prove temporal logic properties of a Fractal
CBS; [10] used hierarchical coloured Petri nets and temporal logic for the
specification and verification of software components designed for embedded
systems. [23] translates the description of a system given in the ADL AADL into
a Generalized Stochastic Petri Net (GSPN) for dependability measures purpose.
These attempts addressed mainly qualitative or deterministic time based analysis,
whereas performance analysis is usually carried out through measures and testing
techniques on existing systems. . It is well known that limiting performance analysis
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to existing systems impacts the quality of the software product [33]. In fact, some
predictive performance modeling was also proposed as in [30] . This approach
translates architecture designs, mostly given in the Unified Modeling Language
(UML), into models adequate for performance analysis. Adapted formalisms used
for thes analysis are Layered Queuing Networks (LQN) [22], Stochastic Petri Nets
(SPN) and Stochastic Process Algebras (SPA). Following this method, [3], [11]
proposed to start from a design model and build a performance analysis model
based on LQN. However, we claim that UML and queueing networks are not
sufficiently expressive to model complex systems, where important characteristics
are synchronization, resource contention and conflicts. Moreover, the method should
be able to handle large architectures.

For these purposes, we propose in this paper a structured approach for
performance analysis of CBS, trying as much as possible to reduce the complexity
of analysis and allowing us to analyse large architectures. We first introduced our
approach in a previous work [25], with an example of performance analysis of an
Enterprise JavaBeans /Common Object Request Broker infrastructure.

The approach, summarized in figure 1 (this figure only appear in colour
in the online version of the paper, not the printed version), starts from the
architecture description of the CBS, provided in an ADL, models components,
derives the CBS global model and finally applies a structured compositional
method to derive performance indices. The models can be saved in a repository
for reuse in analysis of other CBS. Components are modeled with Stochastic
Well-formed Net (SWN) [7], a special class of Stochastic coloured Petri Nets,
widely used for performance analysis of complex systems showing symmetrical
behaviour of active entities. We first translate component interfaces and interactions
in the SWN context. We model these interactions and we show how to build
the global SWN of the CBS. Finally, we apply a structured method, derived
from our previous works [8, 9], allowing us to compute performance indices in an
efficient way, through exploitation of the compositional architecture. Computations
are based on a combined aggregation/tensorial representation of the underlying
Markov chain of the global SWN, which reduces the complexity of analysis, with
time and memory savings. We extend this method to the analysis of CBS with
synchronous and asynchronous interactions (compositions) of SWN corresponding
to components, since the previous method was defined to the analysis of either a
synchronous decomposition or asynchronous decomposition of a global SWN. In
previous works [24, 27], we have studied modeling and performance evaluation of
the Julia implementation of FRACTAL based CBS, which provides synchronous
interactions between FRACTAL components. The present paper extends this work
to more general CBS with synchronous and asynchronous event-based interactions
between components.

Among several component models, we have chosen to illustrate our approach
with the Corba Component Model (CCM) [20]. CCM is indeed a language-neutral
model, taking into account the two classical interaction modes between components:
request/response and event-based.

The structure of the paper is as follows. We present in section 1 the main features
of a CBS, illustrated with the CCM model. We also describe a CCM application,
used as an example along the paper. We follow by giving an overview of our approach
in section 2 and the details of the modeling steps of a CBS in section 3. We explain
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Figure 1: Principle of compositional analysis approach of CBS
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in section 4 our analysis method of a CBS, together with application of the approach
to our example. We conclude and propose future work in section 5.

1 Component Based Systems

1.1 Concepts

A software component is defined as a unit of composition, provided with
contractually specified interfaces and explicit context dependencies [32]. An
interface is an access point to the component, which defines provided or required
services. In addition, types, constraints and semantics are defined by the component
model in order to describe the expected behaviour at runtime.

Interfaces of a component allow it to connect to other components.
Consequently, we build a CBS by connecting the interfaces of components. These
connections are defined through interactions between components. Generally,
two main styles of interactions are defined in component models: synchronous
interactions provided by service invocation (such as RPC or RMI communication)
and asynchronous interactions given through notification of events (asynchronous
messages). Service invocations take place between a client interface requesting a
service and a server interface providing the service. Besides, event communications
are defined between one or more event source interfaces generating events and one
or several event sink interfaces receiving event notifications. The reception of a
notification causes the acknowledgement of the reception and the execution of a
specified reaction called the handler of the event. Some event services use event
channels for mediating event messages between sources and sinks. An event channel
is an entity responsible for registering subscriptions of a specific type of events,
receiving events, filtering events according to specific modes, and routing them to
the interested sinks.

A component can contain itself a finite number of other interacting components,
called sub-components, allowing the components to be nested into several levels.
Such a component is called composite. Components of the lowest level are called
primitive. Assembling two components may require an adaptation of associated
interfaces, whenever these interfaces cannot directly communicate for example. In
this case, the adaptation is done through an extra entity, called connector, modeling
the interaction protocol between the two components.

For each component model, a corresponding Architecture Description Language
(ADL) allows one to describe an assembly of components constituting an
application. From such a description, a set of tools are used to compile and
generate the application code, while checking syntactical and even some semantical
properties.

1.2 CBS illustration : CCM based Systems

1.2.1 The CCM model

CCM [20] is a key part of the CORBA 3.0 standard [17], independent from operating
systems and programming languages and allowing the deployment of components
on a distributed environment.
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Figure 2: The CORBA component model

A CCM component is an implementation entity, described by a set of attributes
and a set of interfaces said ports (termed interfaces in the sequel). Attributes are
named values exposed through accessor and mutator operations. There are two
types of interfaces (figure 2), described in CORBA IDL3: facets and receptacles
playing respectively the roles of either client and server interfaces or else event
source and sink ports.

In order to support events, CCM follows the publish/subscribe event push
model [20], compatible with CORBA notification service [19]. This model defines
two roles: publisher (event source) and subscriber (event sink). Subscribers register
their interest for a class of events by subscribing to the publisher (or the channel)
of this class of events. Communication between publishers and subscribers can
be brokered through event channels. Note that subscribe/unsubscribe components
operations are invoked at CBS deployment and (re)configuration time.

Unlike Fractal, CCM is a flat component model without hierarchy. Moreover,
a CCM component is located inside a container which provides it the runtime
environment and allows it to access a set of non-functional services such
as persistence, event notification, transaction and security. Each container is
responsible for initializing instances of the component types it manages, controlling
their life cycles, and connecting them to other components and common middleware
services, including event publisher/subscriber services and event channels. These
services include non-functional properties provided by controllers in Fractal.
A CCM application is built by defining an assembly, grouping components and
defining metadata describing components.

1.2.2 A CCM application

Along this paper, we exemplify our approach with a stock quoter system, a CCM
application managing a stock information database, inspired from a CCM example
presented in [28]. It consists of two StockDistributor components monitoring a real-
time stock database, two StockBroker components waiting for stock changes and
an Executor component processing stock information (figure 3). When the value of
a particular stock changes, a StockDistributor pushes a CCM event that contains
the stock name, via a CCM event source, to corresponding CCM event sinks



8 N. Salmi et al.

Figure 3: A CCM application

implemented by the StockBroker components. Each StockDistributor is responsible
of a set of stocks.

At reception of event notification, one of the StockBrokers invokes a service
from the executor component through corresponding receptacle and facet interfaces,
whereas the second StockBroker processes locally the event. The executor
component processes the StockBroker request, generates data and invokes itself the
persistence service offered by the container in order to save data. When no event is
generated, the StockBrokers perform continually a local task.

2 Component based analysis approach overview

In this paper, we propose a qualitative and quantitative analysis approach for CBS,
concentrating on performance properties. We use for this purpose the Stochastic
Well-Formed Net model (SWN) [7], a high level Petri Net model which describes
systems in a concise way, and profits from symmetrical behaviours of a system for
an efficient analysis.

2.1 Motivations for the SWN model

The choice of the SWN formalism is mainly motivated by three reasons. Firstly,
in order to be able to evaluate performance indices related to configurations of
systems, such as the number of requests pending in some part of the system,
the mean utilization time of some resource, etc., a state based model like Petri
nets is suitable. Petri Nets are also well known for being able to model complex
systems with concurrency and conflicts, even in the stochastic context, in contrast
with Queuing networks or process algebras models for instance. Secondly, although
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Figure 4: Analysis approach of CBS

Petri Nets are not by themselves a compositional model, interaction between Petri
nets representing sub-components may be defined as transition or place “fusion”
(merging). Thirdly, if complex primitive components are involved, high level Petri
Nets are almost inevitably required. As a high level model, the SWN Petri net
model can also take advantage of behavioural symmetries of system’s entities if there
are such symmetries, by compacting its reachability graph, leading to a Symbolic
Reachability Graph (SRG). An SRG is composed of symbolic markings, where each
symbolic marking represents a set of ordinary (coloured) markings having equivalent
behaviour. Finally, SWNs are a well studied class of high level stochastic Petri nets
and benefit from a consistent set of analysis algorithms and tools [14].

2.2 Analysis steps

Our approach for analyzing a CBS consists of two main phases :

• building a global SWN model for the CBS, seen as a composition of SWN
models associated to components and their interconnections, and

• applying a structured analysis method for the computation of performance
indices.

These two phases are detailed through figure 4:

1. From the CBS description given using the ADL related to the component
model, translation of the component behaviours (source code) and their
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interactions in the SWN context. We obtain a set of SWNs called Component
SWNs (C-SWNs), (for components) and Interaction SWN (I-SWNs) (for
complex interactions) involving connectors. This modeling depends heavily
on the component model.

2. Modification of the C-SWNs and I-SWNs in order to be composable in the
sense of Petri nets composition (fusion of places or transitions), giving rise
to Composable Component SWNs (CC-SWNs) and Composable Interactions
SWNs (CI-SWNs).

3. Composition of the CC-SWNs and CI-SWNs (seen as a unique set {SWN1,

. . . , SWNK}) by merging interfaces elements. We obtain a global SWN (G-
SWN) modeling the CBS.

4. Finding of the set of SWNs (Nk)1≤k≤K′ representing a possible decomposition
of the G-SWN, that fulfill conditions for a structured representation of
the SRG and its aggregated generator. These SWNs can be one of the
(SWNk)1≤k≤K or grouping together a subset of them.

5. Computation of performance indices by applying the structured analysis
method [8, 9].

In order to partly automate our approach, we explain each of these steps in the
following.

3 SWN modeling for CBS

The first three steps of our approach are detailed in this section. Our aim
here is to derive automatically a stochastic model for the CBS, to be used for
efficient structured compositional analysis. A set of rules are therefore proposed
for automatic translation of CBS descriptions in the SWN framework. We first
discuss our modeling choices, then we detail modeling of interfaces of components
and modeling of primitive and composite components.

3.1 General modeling choices

3.1.1 modeling stable configurations

Before being available to users, a CB application must be deployed and configured.
These steps include, among others: initialization and runtime contexts definition,
subscribing of components exposing an event sink for event notifications, etc. When
these steps are completed, the application is activated. We say that it is in a
stable configuration. During its execution, the application architecture may evolve
through (runtime) reconfigurations, for instance by creating or deleting instances of
components, subscribing/unsubscribing of components for a special type of event.

Although the capability of runtime evolution of the architecture is a leading
property of several middlewares for CBS, it seems that behavioural analysis of CBSs
cannot be efficiently carried out with a single formal model of the system. In fact,
any modification of the architecture requires a specific modeling, primarily devoted
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to check that, starting from a configuration A, the application will eventually reach
a given configuration B. In contrast, analysis of a given configuration (say A or B)
addresses both qualitative (reachability, deadlock freeness, etc.), and quantitative
(computation of performance indices) aspects of this configuration. Moreover, in
the performance evaluation context, switching from A to B probably corresponds
to a “short” time period (transient phase, finite horizon analysis), whereas we are
interested in performance indices of software systems computed over long periods
(steady-state analysis).

In the present work, we do not address the verification of the reconfiguration
behaviours of CBSs and we concentrate on “stable” (i.e. fixed) architectures.
Hence, we do not model non-functional services pertaining to initialization and
reconfiguration steps. However, we can obviously compare performances of two
configurations A and B, each one studied with our method.

3.1.2 Implementation dependencies

Since we wish to derive performance indices of a CBS, we emphasize that the
architecture description of the CBS is not sufficient for performance modeling: it
must be complemented with information from the implementation of the component
model. Indeed, an implementation of a model can differ from another one. This
is the case for instance, for the Fractal model: the Julia implementation
uses synchronous method invocation, while Fractive uses an asynchronous (late)
operation invocation.

3.1.3 Colours

Basic colour classes are used to model data entities and active entities of
components. Data entities consist of data flow such as requests, parameters of
requests, requested data, event data or even resources. Active entities are execution
flows (processes and threads). In our context, we emphasize on modeling entities
involved in interfaces and interactions, since entities used inside a component
depend only on that component. More precisely, we adopt basic colour classes for
modeling methods and their parameters invoked through interfaces, event types,
possible resources and execution flows of a component. For this last purpose, we
should know if the component is multithreaded or not. It could also be useful to
“colour” event related data when messages associated to the events should be taken
into account from a performance point of view.

3.1.4 modeling event entities

Event messages can be brokered through an event channel, depending on the
specification of the component model. In this case, we discuss here the need for the
explicit modeling of the event channel. In fact, when the event channel receives an
event notification from the publisher, it generally acknowledges it (as it is done in
CORBA [19]) and then it routes the notification to all interested subscribers. The
event acknowledgement can be sent to the publisher as soon as the notification is
received by the channel, or it can be delayed until the subscribers receive themselves
the notification and acknowledge it. In order to obtain a flexible model for our
components, it could be interesting to model explicitly the event channel to consider
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various cases of event acknowledgement. However, this may affect response times
and performances of the whole system. Therefore, in order to take into consideration
this influence, we choose to model explicitly the event channel.

3.1.5 Container services

A container acts as a component manager. It offers three kinds of services :

• Operations relating to component lifecycle, such as creating, deleting or
modifying a component or a connection, etc.

• Operations relating to service invocations of components, and

• Calls to non-functional services offered by the operating system or a
middleware, like transaction manager, security manager, event manager and
persistence manager services.

Lifecycle and connections management is related to non stable configurations
non covered by this paper, for reasons stated in 3.1.1. However, we model other
container services which don’t imply modification of the architecture. These services
are considered as abstracted components endowed with their proper interfaces, and
are modeled with SWN models as for components (see details in section 3.6).

We detail now the modeling phase, beginning with modeling interfaces of
components, then components and finally the application.

3.2 Modeling client/server interfaces

A service invocation takes place by specifying the required method and its
parameters. So, we translate corresponding interfaces of a component following the
mapping rule.
Mapping rule 1: client/server interfaces
• A server interface, identified by a set of colours STh modeling possible server
threads, offering a set MP of operations or methods with their parameters, is
modeled by representing the beginning of service provided and its ending with two
transitions, respectively tBPS and tEPS (figure 5 (right)). tBPS is controlled by
two places ServTH and SoMP modeling respectively server threads and methods
with their parameters. Possibly, a third place ResServ coloured with a basic class R
is used modeling specific resources needed during execution of a service. Whereas,
tEPS is controlled by a place Result coloured with tuples belonging to STh × MP ×
R modeling the result of request processing.
• A client interface, identified by a set of colours CTh modeling possible request
threads of the client component is modeled with two transitions tBRS and tERS

representing the beginning of service request and its ending (figure 5 (left)). tBRS

(resp.tERS) is controlled by a place PBegReq (resp. PEndReq) coloured with CTh
and modeling respectively requesting and released client threads.

The model of a request/response interface depends a priori on the invoked
method and its parameters. In our mapping rule, we do not separate them: if such
a level of detail is required for performance analysis, a colour class is defined with
static subclasses sorting the possible pairs (method, its parameters) into disjoint
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ServTH
SThM0

ResServ
RM0

Request
STh,MP,R

Result
STh,MP,R

SoMP
MPM0

PBegReq
CThM0

PEndReq
CTh

TERS

TBRS

TEPS

TBPS

<t,mp,r>

<t>

<mp>

<r>

<t,mp,r>

<c>

<c>

Figure 5: C-SWNs models of client (left) and server (right) interfaces

subsets. Note that if the pair is irrelevant for a given level of detail, we simply omit
this colour class.

Let us give the formal definition of client and server interfaces; t• (resp. •t)
denotes the set of output (resp. input) places of transition t.

Client interface: A client interface I of a C-SWN is of a couple of transitions
(tBRS , tERS), such that:
• D(tBRS) = D(tERS) = CT × MP (D(x) represents the colour domain of the
node x);
• t•BRS = •tERS = ∅;
• ∃!pBegReq ∈ P , ∃!pEndReq ∈ P , pBegReq 6= pEndReq,
Pre(pBegReq, tBRS) = Post(pEndReq, tERS) = Id.

Server interface: A server interface I of a C-SWN is a tuple < PI , TI > such
that:
• PI = {ServTH, SoMP,ResServ};
• TI = {tBPS , tEPS} with D(tBPS) = D(tEPS) = ST × MP × R;
• Pre(ServTH, tBPS) = Post(ServTH, tEPS) = Id;
• Pre(SoMP, tBPS) = Post(SoMP, tEPS) = Id.
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ServTH
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<c1,t>

<c2,t>

<c2>
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Figure 6: Interfaces of the CC-SWNs models with multiple client interfaces
connected to the same server interface

Mapping rule 2 defines the CC-SWN, extending the client interface part of a
C-SWN to allow composition of SWN and subsequent structured analysis without
modifying the semantics of the component.

Mapping rule 2: CC-SWN for clients The client interface of a C-SWN is
modified, leading to a CC-SWN, by adding a place (and associated arcs) as
a postcondition of the beginning transition tBRS and as a precondition of the
transition tERS . The colour domain of this place is either CTh × STh or else
CTh × STh × IDC when several client components require the same service (see
below).

Dealing with multiple clients When a server interface of a component is
connected to several client interfaces of other components, the C-SWN of this
component must be modified in order to be composable with client interfaces of
several components, in the sense of Petri nets composition (fusion of places or
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Ack_channelReleasTh
PTh

SentEventsPThreads
PThM0PTh

TNE

<p>

<p>

Ack_subscrib

SE_channel

GenerEvents
E

CAck

Rec_Events SoE
EM0E

TRE TSE

<e>

<e><e>

<e>

Figure 7: SWN model of an event channel

transitions). This is achieved by applying mapping rules 2 and 3. The resulting
CC-SWN keeps the same semantics as the corresponding C-SWNs.
Mapping rule 3: Multiple clients for one server interface The interface
part of the CC-SWN of a server interface which have multiple connected clients is
modified as follows with respect to the single client case: (i) The transitions tBPS

and tEPS of beginning and ending service are duplicated as many times as the
number of client interfaces; (ii) An IDC colour class is introduced to distinguish
between several components exposing a client interface. The resulting interface is
given by figure 6.

3.3 Modeling event-based interfaces

Event based communication is generally realized following a specific pattern. Among
the most representative patterns, we find the publish/subscribe model, used in the
CORBA notification specification. In this specification, a publisher pushes an event
of a specified type to subscribers through an event channel (a channel manages
a specified type of events). The publisher component continues its work after
emitting an event. The event channel receives the notification and acknowledges it
to the publisher. Then, it sends the notification to all interested subscribers. When
receiving an event, a subscriber acknowledges it and triggers a handler processing
the event. This interaction model is translated with mapping rule 4 modeling the
publisher, the event channel and the subscriber.
Mapping rule 4: Event interfaces (1)
• A publisher interface of a component, identified by a set PTh of colours modeling
possible publisher threads, is modeled with a transition TNE representing the
notification of events (figure 7, left), with Pthreads and Ack channel places as
preconditions, and ReleasTh and SentEvents as postconditions.
• An event channel managing a set E of events of a specified type is modeled
with two transitions TRE and TSE, expressing respectively receiving events from
publishers and sending these events to subscribers (figure 7, right). The TRE
transition is controlled by Rec Events and SoE places and has the CAck and
GenerEvents places as postconditions. While, the TSE transition is controlled
by GenerEvents and Ack subscrib places and has as postconditions the SoE and
SE channel places.
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Figure 8: Example of the SWN model of a subscriber

• The SWN of a subscriber interface of a component, identified by a set STh
of colours modeling possible subscriber threads (see figure 8 for an example), is
made of two parts: (i) a local processing modeled by the BeginTask and EndTask
transitions, controlled by two places ReceivEvents and SThreads places, and (ii) an
event processing part triggered with the TTrigger transition modeling the reception
of an event. TTrigger is also controlled by ReceivEvents and SThreads and has
SAck and EToProcess as postconditions. The event handler is modeled with the
TEHandler transition.

In the publisher model, the two preconditions of the TNE transition Pthreads
and Ack channel model respectively the publisher threads and the ready state
of the component. Whereas, postconditions, ReleasTh and SentEvents, model
respectively the publisher threads resuming their activities and event notifications.
The Ack channel and SentEvents places are uncoloured as we model publishers
notifying one specific type of events

In the event channel model, the Rec Events and SoE places model
respectively received notifications and the set of possible events. Rec Events is
not coloured. Postconditions of TE (CAck and GenerEvents) model respectively
acknowledgement and generated events to be sent to subscribers. CAck is also not
coloured, and GenerEvents has the same domain as SoE. The Ack subscrib place
models the state of the channel ready to broadcast notifications to subscribers. It
is also uncoloured like Ack channel of the publisher model. The SE channel place
models events sent to subscribers by the channel.
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In the subscriber model, local processing should be interrupted when events
are received. We model this interruption with inhibitor arcs preventing firings of
local processing transitions (BeginTask, EndTask and possibly others expressing
more local activities)) as soon as an event is received in place ReceivEvents. The
SThreads place is coloured with the STh basic class, while ReceivEvents has the
same domain as the SoE place (neutral or set of event colours when dealing with
several types of events). Reception of an event causes sending an acknowledgement
in the uncoloured place via firing of the transition TTrigger (or TTrigger1 ), SAck
and execution of an event handler. In this model, processing an event is abstracted
into one transition TEHandler (or TEHandler1 ). We could replace this transition
with a subnet detailing the handler if we are interested in impact of processing
details on performances of the system.

Note that triggering the handler should usually be achived in a “short” period of
time, with respect to components activities. This should be reflected in firing rates
ratios (for instance 1/0.001) of TTrigger, TTrigger1 transitions, over BeginTask,
EndTask and TEHandler, TEHandler1 transitions.

Formally, we define publisher and subscriber interfaces and event channel, as
follows.

Publisher interface: A publisher interface I of a C-SWN N consists of a tuple
< PI , TI > such that:
• PI = {PThreads, SentEvents, ReleasTh, Ack channel}, with D(PThreads) =
D(ReleasTh) = PTh, D(Ack channel) = D(SentEvents) =ǫ;
• M0(Ack channel) = 1;
• TI = {TNE} with D(TNE)=PTh;
• Pre(PThreads,TNE)=Post(ReleasTh,TNE) = Id ;
• Post(SentEvents,TNE)=Pre(Ack channel,TNE) =1.
where ǫ denotes the neutral colour.

Subscriber interface: A subscriber interface I of a C-SWN N is a tuple
< PI , TI > such that:
• PI = {SThreads, ReceivEvents, EToProcess, SAck}, with D(SThreads) =
D(EToProcess) = STh, D(SAck) =
D(ReceivEvents) =ǫ;
• TI = {TTrigger, TEHandler} with D(TTrigger)=
D(TEHandler) = STh;
• Pre(SThreads,TTrigger)=Post(EToProcess,TTrigger)=Id;
• Pre(ReceivEvents,TTrigger)= Post(SAck,TTrigger) =1.

Event channel: An event channel model is a tuple < PI , TI > such that:
• PI = {SoE,Rec Events, SE channel,GenerEvents}, with D(SoE) =
D(GenerEvents) = E, D(Rec Events) =
D(SE channel)=D(CAck)= D(Ack subscrib)=ǫ ;
• M0(Ack subscrib) = 1;
• TI = {TRE, TSE} with D(TRE) = D(TSE) = E;
• Pre(SoE,TRE)= Post(GenerEvents,TSE)=
Pre(GenerEvents,TRE)= Post(SoE,TSE)= Id;
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Figure 9: SWNs models of event interfaces with multiple publishers and subscribers

• Pre(Rec Events,TRE)= Post(CAck,TRE)=
Pre(Ack subscrib,TSE)= Post(SE channel, TSE)= 1.

Dealing with multiple publishers and subscribers
A publisher interface of a component can push events to several subscribers. In
the same way, a subscriber interface can receive events from various publishers
generating the same type of event. This is the role of the event channel to mediate
communication between publishers and subscribers. So, in these cases, the C-
SWN of the event channel must be modified (see mapping rule 5) in order to be
composable at the same time with several publishers and subscribers models (fusion
of places or transitions). This modification gives rise to a CC-SWN modeling the
event channel. Note that CC-SWNs corresponding to publishers and subscribers
components remain the same obtained C-SWNs without any modification. We
only provide an informal description with a figure to illustrate CC-SWN model of
multiple publishers/subscribers event channels. Moreover, in the figure, we model
for clarity only one transition (Task1 ) for the local processing of the subscriber.
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Mapping rule 5: Event interfaces (2) The C-SWN of an event channel with
multiple publishers is modified (figure 9) by duplicating the TRE transition with
its corresponding arcs and places (Rec Events, CAck), as many times as there are
publishers. If there are multiple subscribers, places SE channel, Ack subscribe are
duplicated (with corresponding arcs), as many times as there are subscribers.

3.4 modeling primitive components

In this section, we derive an SWN model (its C-SWN ), for each primitive
component. Clearly, it is possible to abstract at this stage, the model of a primitive
component by choosing an appropriate level of details:

• At the highest abstraction level, the content of a primitive component can be
modeled by a very simple SWN.
This is done when the interest of the modeller doesn’t focus on the
details of the component, but rather aims at estimating performances at an
architectural level of its application.

• At a finer level of details, we model all internal activities of the component.

The C-SWN of a primitive component is then built as follows.

PRIMITIVE COMPONENT CC-SWN BUILDING ALGORITHM

BEGIN

1. Analyze the source code of the component, fix a level of details

for modeling.

2. For each set of methods offered by a server interface, model this

interface using mapping rule 1. Model internal activities if required

by the selected level of details.

3. For each service invocation, model the client interface using

mapping rule 1.

4. Complete eventually client and service interfaces models using

mapping rules 2 and 3.

5. Translate into C-SWNs each event and source using mapping rule 4,

providing the event channel model. Model local activities of

subscribers and event channels, depending on the required level of

details.

6. Complete the obtained model for each event channel using mapping

rule 5, whenever several publishers and/or subscribers are involved.

7. If another activity is called within an interface (ie. when a method

of the interface is invoked), model this activity.

END

After this modeling step, the obtained CC-SWN is completed with stochastic
parameters. This is done by associating rates to transitions of the obtained model.
These rates may be estimated through a model parameters estimation phase, where
a test application (see for instance the Grinder tool) is ran in order to measure the
parameters needed for performance prediction.

We illustrate the construction of a CC-SWN through modeling of the first
StockBroker component. We model first the event sink interface by applying
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Figure 10: C-SWN and CC-SWN of the StockBroker 1 component

mapping rule 4. The ST1 colour class models the threads of the component, whereas
the NE class represents possible received events. We then build the model of the
client interface using mapping rule 1. We obtain the C-SWN of the figure 10(a).
Then, we complete the client interface using mapping rule 2. The final CC-SWN is
given by the figure 10(b).

3.5 modeling composites

After modeling primitive components of a CBS architecture, we model composites
of higher levels. A composite component of a level i is made up of a set
of interconnected sub-components of level i − 1, being themselves primitive or
composite. Building the SWN model of a composite requires connecting sub-
components CC-SWNs and modeling its external interfaces. This procedure is
repeated for each level until reaching the application level. For this purpose, we
apply the following algorithm:

COMPOSITE CC-SWN BUILDING ALGORITHM

BEGIN

Let N be the number of levels of the composite.

1. Model primitive components of level 0.

2. For (i=1; i<N; i++) do

a. For each composite C of level i do

(i) Assemble components of level i-1 :

For each couple of subcomponents connected by a service

invocation, fuse corresponding transitions (TBRS,TBPS) and

(TERS,TEPS).

For each couple of components connected by an event

interaction, fuse places of the publisher and event channel

(SentEvents, Rec_Events) and (Ack_channel,CAck), and places

of event channel and the subscriber (SE_channel,ReceivEvents)
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and (Ack_subscriber,SAck).

(ii) Each not connected interface of a subcomponent is

considered as an external interface of C.

EndFor

b. Model primitive components of level i.

EndFor

END

Fusion of two transitions (resp. places) consists of defining a unique transition
(resp. place), and keeping associated arcs of fused transitions (resp. places). Colour
classes of the two transitions are mapped in one to one correspondence for common
parameters of the interface and specific colour classes of each transition (resp. place)
are kept. Hence, the colour domain of the fused transition is the Cartesian product
of colour classes of the fused transition (without repetition). Whereas, colour classes
of two fused places are mapped in one to one correspondence leading to the colour
domain of the fused place.

When assembling SWN models of sub-components, name conflicts (of places,
transitions or colour classes) may arise. They are eliminated by renaming. This
renaming, as colour classes instantiation, requires at the end of analysis, to restate
analysis results (obtained properties and computed performance indices) in the
initial context of the CBS. Note that, together with the CC-SWN of the composite,
we keep track of the CC-SWNs of its sub-components since they will be used during
the analysis phase.

3.6 Modeling container services

A container is made up of a set of interconnected CCM components and a set
of services offered to its components. It mediates invocations of components from
or to external components belonging to other containers, through: (i) either a
callback (external) interface which acts as an interceptor for all incoming calls to
the component, (ii) or an interceptor for outgoing calls, internal to the container.

So, building the SWN of a container requires connecting its components CC-
SWNs, modeling the services and modeling the mediation role.

3.6.1 Connecting the components CC-SWNs

Interconnection of the CC-SWNs is translated into fusion of transition/places
corresponding to interfaces of communicating components, as explained in
section 3.5.

3.6.2 Modeling container services

Achieving this modeling requires to associate a CC-SWN model to each container
service and a second SWN modeling routing of a component request to the service
needed. We assume a monothreaded container. Mapping rule 6 describes this
concern illustrated in figure 11.
Mapping rule 6: Container services
• A container service is modeled with an abstracted component having one service
interface, identified by a set of server threads colours and offering a set MP of
methods (figure 11(b)). One transition Exec service abstracts the service.
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Figure 11: Modeling elements related to container services

• Routing a request to an invoked container service is modeled with the model
of figure 11(a). A single place ContainerThread models the unique thread of the
container. The InterceptCallServ transition expresses intercepting a request. It
is controlled by the ContainerThread place. The TBRSIntern transition models
the request made by the container to its service. The result is obtained with the
TERSIntern transition and sent to the requester using EndCallServ transition.

We choose to abstract the activity induced by a container service, as our goal is
to consider the impact of a service on the execution of the analyzed CBS. In another
side, the container can manage its component instances, threads or resources using
the pooling technique for reducing some overhead. If the designer is interested in
knowing the impact of this pooling on performances of his application, we can
consider this by associating a consequent rate to the transition TBRSIntern related
to the invoked operation. Note that, for more clarity, the SWNs given in figure 11
are not coloured, but should be.

3.6.3 Modeling the mediation role

Outgoing component calls are mediated by the container. This is modeled, as in the
case of a container service invocation, using mapping rule 6. External invocations to
components services located inside a container are also intercepted by this container
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on an external interface, and routed to the concerned component. This is modeled
with mapping rule 7.
Mapping rule 7: Callback interfaces
Routing an external invocation to a component service of a container is modeled
with the model of figure 11(c). The InterceptExt transition models the interception
of a request. It is controlled by the ContainerThread place. The TBRSCallExt
transition represents the submission of a request to the concerned component. The
result is obtained with the TERSCallExt transition and sent to the requester using
EndCallExt transition.

3.6.4 CC-SWN of a container

Modeling a container leads to a CC-SWN interfaces of which are defined as
callback interfaces and non-connected interfaces associated with internal invocation
of external services.

CONTAINER CC-SWN BUILDING ALGORITHM

BEGIN

1. Model each container service using mapping rule 6.

2. Connect communicating CCM components.

3. For each invocation of a container service, build a mediation

part using mapping rule 6, connect it to the requested component

on one side, and to the service model on the other side.

4. Model each callback interface using mapping rule 7, and connect

it to the requested component service.

5. For each internal invocation of a service offered by an external

component, build a mediation part following mapping rule 6,

and connect it to the requester component.

END

We illustrate the modeling with the SWN given in the middle of figure 12. In this
figure, two components cp1 and cp2 request respectively service1 and service2 of
the container. An external client also requests a service from a component internal
through the container.

3.7 Building the G-SWN of a CBS

Modeling a CBS application requires interconnection of the CC-SWNs models of
all its elements (components, event channels, containers, ...) obtained in previous
steps. This is done via connection of communicating interfaces. The obtained model
is then completed by “closing” interfaces of the application with a small Petri net
to ensure a finite state space of the G-SWN . This is a classical method, allowing
us to limit the number of entities in the model. In the Petri net context, we add a
small Petri net to each interface of the application with an adapted initial marking,
generally an upper bound of the number of entities. An example of such a closing
SWN is given in figure 13.

For our application example presented in figure 3, we first build CC-SWN
models of the StockDistributor components 1 and 2 (figures 14 and 15), the
StockBroker components 1 and 2 (figures 10(b) and 16) and the Executor
component (figure 17(a)).
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We also build the CC-SWN of the event channel following mapping rule 4. The
event channel manages a set E of events for two publishers and two subscribers. So,
we apply mapping rule 5 to build the CC-SWN of the channel (figure 18).

On the other hand, the executor component receives requests from the first
subscriber on its server interface. Two basic colour classes Serv and MP, modeling
respectively server threads and (method, parameters) pairs, are involved in
processing requests.

Storing data is achieved by requesting the container persistence service through
a client interface (transitions BRS and ERS) of the executor component. We obtain
so the C-SWN which is completed also using mapping rule 2 (figure 17(a)). The
persistence service is modeled as an abstracted component given by figure 17(b)).
The colour classes BD and MPBD are respectively representing threads of the
service and its methods with associated parameters.

Then, we modeled the container which routes request of the Executor
component to the persistence service. Finally, we connect all obtained CC-SWNs (of
components, event channel, container and persistence service) and close the global
model with a “closing” Petri net. We obtain thus the G-SWN of figure 19.

Note that some places and transitions have been renamed because of name
conflicts between the two StockDistributors, between the two StockBrokers and
between the Executor and the persistence service.
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Figure 20: Synchronous (left) and asynchronous (right) decomposition of SWNs

4 Structured performance analysis of CBS

After generating the G-SWN of a CBS and the (CC-SWNk)k∈K corresponding to its
components, we apply the two last steps of our analysis approach, aiming mainly at
computing performance indices of a system such as the response time to a request,
the throughput, the mean number of a certain resource, etc. We may also check
qualitative properties like deadlocks, reachability of a particular state.

Analysis of a CBS can be performed through the direct analysis of the G-SWN
obtained in the first step of our method. This approach has been followed in [3]
for analysis of a composition of SWNs, and implemented in the Algebra tool of the
GreatSPN package [21]. In our approach, we rather benefit from the compositional
structure of CBSs in order to provide an efficient steady-state performance analysis
with regard to computation time and memory requirements.

For this purpose, we devise an extension of our previous work [8, 9] adapted to
CBS. Let us remind that this approach defines a structured analysis method for a
decomposition of SWNs, allowing to avoid explicit construction of the aggregated
Markov chain corresponding to the global SWN. The main idea is to decompose a
(global) SWN into several subnets, and study each subnet augmented with “parts”
abstracting interactions with other subnets. These separated studies are then used
to derive a tensorial representation of the generator of the underlying aggregated
Markov chain of the global net. The tensorial representation is finally used to
compute performance indices which leads to memory and computation time savings.

For this purpose, two kinds of decompositions were defined: (i) a “synchronous”
decomposition (figure 20, left) modelling a complex “Rendez-vous” like
synchronization between two SWNs;
(ii) an “asynchronous” decomposition (figure 20, right) which corresponds to an
asynchronous method call or a message sending and receiving between two or more
SWNs. Each kind of decomposition requires a set of conditions which can be checked
at the SWN definition level. We refer the reader to [12, 13] for a detailed presentation
of these conditions.

4.1 Structured analysis method for CBS

The extension of our structured analysis to CBSs rises three problems:



30 N. Salmi et al.

1. Composition of CC-SWNs of components, as we start from the definition of
components in the case of a CBS. This is in contrast to the previous method where
a global SWN is decomposed into several subnets. Composition of SWNs models
of a CBS has been explained above.

2. Bringing an interconnection of components into a synchronous or
asynchronous composition of SWNs. We map a request/response interaction into a
synchronous composition of CC-SWNs, while we model an event interaction with
an asynchronous composition of CC-SWNs. We emphasize here that our modelling
of interfaces ensures satisfaction of structural conditions stated for synchronous
and asynchronous compositions of subnets given in [12, 13].

3. Impact of synchronous and asynchronous compositions in the same global
model, as the structured method was defined for either a synchronous composition
or else asynchronous composition of SWNs. This problem leads us to restrict the
application of the structured analysis to the following cases:
(i) If (N1,N2) and (N1,N3) (resp. (N2,N3)) are in pairwise client/server
relationship, then (N2,N3) (resp. (N1,N3)) are not in client/server relationship.
(ii) If (N1,N2) are in publish/subscribe relationship, then if they are in client/server
relationship too, then event colours are not involved in the client/server interaction.
(iii) If (N1,N2) and (N1,N3) are in publish/subscribe relationship, then if (N2,N3)
are in client/server relationship, then event colours are not involved in the (N2,N3)
interaction.

We give below our analysis algorithm based on the structured method. We start
with the G-SWN of the application and the CC-SWNs corresponding to the CBS
elements (components, channels, containers, ...). Let us denote by E the set {CC-
SWNk | 1 ≤ k ≤ K}.
1. Find the set of SWN subnets (Nk)1≤k≤K′ representing a possible decomposition
of the G-SWN, that fulfill conditions stated in [12, 13] for a structured
representation of the SRG and its aggregated generator. These SWNs do not
necessarily correspond to the CC-SWNs of the set E due to restricted conditions
above. This point is investigated by checking first service invocation interactions,
and then event interactions.
2. Extension of the SWNs Nk to autonomous SWNs N̄k. These autonomous SWNs
are called extended nets (see [12, 13] for details).
3. Generation of the SRGs of these extended SWNs.
4. Computation of the synchronized product of these SRGs and of the tensorial
representation of the generator of the underlying aggregated Markov chain.
5. Computation of the steady state distribution of the aggregated model and
computation of the required performance indices.
6. Expression of the results in the initial context of the components.

Automation of points 1 and 6 are currently under development, whereas the
the others steps have been automated in a tool compSWN, the new version of the
TenSWN tool [8].

4.2 Illustration

We note that the set of (CC-SWNk) obtained when modelling components satisfy
conditions for a structured analysis. We then use our tool compSWN on this set of
subnets to compute steady-state probabilities.
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Cf —E— —R— —Serv— —MP— —BD— —MPBD—

1 1 4 3 5 4 3

2 4 4 3 5 4 3

3 8 4 3 5 4 3
4 12 4 3 5 4 3

Cf NbS NbO TG TC MG MC

1 51840 7538688 147 25 13.46 0.19

2 129600 60309504 537 116 37.13 0.45

3 233280 964952064 1130 382 68.65 0.78

4 336960 15439233024 1650 855 100.17 1.13

Table 1: State space size and time computation for various configurations of the
application

Transition Rate Transition Rate

GenEvents1 0.75 BPS 0.9
GenEvents2 0.65 localSub1 8

SendEvents1 0.8 localSub2 8

SendEvents2 0.7 process 0.9

Table 2: Transition rates of the studied configuration

4.2.1 Savings with the structured method

We first show time and memory savings due to the use of the structured analysis.
To this end, we use the GreatSPN environment on the G-SWN to compare results
of both analysis methods. We vary the cardinalities of our basic colour classes, and
we study the behaviour of the solvers for several configurations. The solvers run on
a Suse linux 9.2 workstation with 512 MO.

We report in table 1 behaviours of the two solvers (GreatSPN and compSWN)
for what concerns memory usage (in bytes) and computation times for the
SRG generation phase only of the resolution, i.e. without computing steady-state
probabilities nor performance indices. We also indicate the state space sizes of the
global net. Notations for table 1 are the following: —Colour— is the cardinality
of the static colour subclass denoted by Colour, NbS is the number of symbolic
markings, NbO is the number of ordinary markings, TG is the computation time
of GreatSPN, TC is the computation time of compSWN, MG is the memory (in
Megabytes) used by GreatSPN and MC is the memory used by compSWN. Note
that we assume a cardinality of value 1 for basic colour classes PT1, PT2, ST1
and ST2 of respectively publishers and subscribers, as we considered monothreaded
components.
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Figure 21: Event processing response time versus event receiving rate for two
container service rates

4.2.2 Response time variations

We are interested in studying the variation of three performance indices:
• Response time to process an event in the first subscriber, with respect to the
event receiving rate, since it invokes a service from another component, which itself
invokes a container service.
• Response time for local processing of the subscriber, with respect to the event
receiving rate.
• Response time of a subscriber request processed by the executor component,
regarding the event sending rate.
The goal of studying these variations is to evaluate the impact of the container

service (for the first indice), and the impact of sending and receiving events on
the subscriber activity (local and event processing). For that purpose, we choose
configuration 4 (table 1), since the number of symbolic markings is significantly
higher than for configurations 1 to 3.

Note that even though we use small cardinalities for colour classes, a colour may
model a group of elementary entities, for instance a request colour can stand for
10, 100 or 1000 requests; obviously, firing rates of transitions involving this colour
should be adapted to the semantics of a coloured token (100 requests provide a
possibly 100 times (or more) slower processing rate for instance).

We take fixed rate values for a critical set of transitions (see table 2) and we
vary transition rates (transitions not appearing in this table have rate equal to 1,
i.e. faster than all other transitions, rates being given in the same unit):
• For the first variation, we fix the rate of the BPersistServ transition of

the persistence service model to a value (0.2 then 1); we vary the rate of the
receiveEvent1 transition of the first subscriber, then we compute the response time
for processing an event. We obtain the diagram of figure 21.
• For the second and third variations, we take several values for the SendEvent1
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Figure 22: Subscriber local activity response time versus event sending rate

and respectively receiveEvent1 transitions and we compute the response time for
a subscriber request to the executor component and for a local activity of the
subscriber. (figure 22).

The first diagram shows an increasing response time as the receiving rate
increases for the two curves. However, we can see an improved (reduced) response
time in the second curve, corresponding to a higher processing rate of the persistence
service. This phenomenon proves that container services have an important impact
on the performance of the whole system. In the second diagram, the response time is
slowly increased in the first period of time, and gets rapidly augmented as the event
receiving rate increases. This is expected, since event processing slows down local
processing. Last computations show a very neglecting impact of the event sending
on the processing of a subscriber request, as the obtained response time remains
approximately the same (61.1 for event sending rates ranging from 0.1 to 5). That
is an expected result since events do not interrupt the executor component.

5 Conclusion

Throughout this paper, we have proposed an approach allowing to study, in an
efficient way, performances of Component Based Systems. The approach starts from
the description of a CB designed application, given in an Architecture Description
Language. We translate each component into an SWN model describing its
functional behaviour and, partially, its non functional behaviour, using systematic
mapping rules. Then, we connect the SWNs of the components following the
architecture of the system, starting from primitive components to highest level
composite components.

The main advantage of our proposed modelling for CBS is its suitability
for applying our adapted structured analysis of SWNs composition, since
modelling ensures required conditions for pairewise interactions of components. Our
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structured analysis, based on a tensorial representation of the symbolic reachability
(SRG) of the G-SWN of the studied CBS, allows us to avoid the explicit construction
of the aggregated Markov chain corresponding to the G-SWN. Hence, it enables
important memory and computation time savings.

We instantiated this method to Fractal and CCM CBS in our papers [27,
26]. We are currently developing automation of the various steps of the method:
extraction of information from the ADL descriptions of the CBS and combination
of models of sub-components to enable structured analysis.
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