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The High-Variety, Low-Volume (HVLV) scheduling problem is one of the most arduous and combinatorial
optimization problems. This paper presents an analytical scheduling model using a tropical algebra called
(max,+) algebra. The aim is to find an allocation for each operation and to define the sequence of operations
on each machine, so that the resulting schedule has a minimal completion time and the due dates of the
different jobs (products) are met such that a Just-In-Time (JIT) production will be satisfied. To generate
feasible schedules, decision variables are introduced in the model. The algebraic model developed in this
work describes the discontinuous operations aspect of HVLV systems as Discrete Event Dynamic Systems
(DEDS). It is non-linear in the sense of (max,+) algebra. The focus of this research concerns the development
of a static scheduling approach for deterministic and not-decision-free HVLV manufacturing systems. Firstly,
using (max, +) algebra, a direct generation of event-timing equations for deterministic and not-decision free
HVLV systems is obtained. Then, a non-linear optimization problem in (max, +) algebra is solved. Finally, the
validity of the proposed approach is illustrated by simulation examples.

HVLV manufacturing systems, (max, +) non-linear model, scheduling and control modeling, non-linear
optimization

1. INTRODUCTION

High-Variety, Low-Volume (HVLV) manufacturing
systems are a class of dynamic systems where
the behavior is similar to Discrete Event Dynamic
Systems (DEDS). They are characterized by a wide
variety of products using shared machines, a weak
and personalized demand, relatively long processing
times and frequent change over and set-up times.
Consequently, a continuous approximation of the
production flow by continuous flow systems (Habchi
and Berchet, 2003) (Tamani, Boukezzoula and
Habchi, 2009) (Tamani, Boukezzoula and Habchi,
2011) is not appropriate for HVLV systems. In this
framework, it seems very interesting to handle this
kind of systems as Job-Shop systems (Huang and
Irani, 2003) due to the wide variety of processed
products.

Production systems can be modeled from two differ-
ent points of view, qualitative or quantitative. Qual-
itative models capture logical aspects of a system
such us deadlocks, conflicts, etc. Automata and

finite state machines (Hopcroft, Motwani and Ull-
man, 1979) and Petri Nets (PN) called also un-
timed models (Kasturia, Dicesare and Desrochers,
1988) fall into this category. A PN is a graphical
technique that allows the modeling of systems with
parallel and synchronous processes. The model may
then be used for the analysis, the representation
of the dynamic evolution of the system and for the
controller synthesis. Quantitative models, highlight
the quantitative system performance in terms of the
throughput, number of parts in the system (work-in-
process), due dates of products, etc. Discrete event
simulation and (max, +) algebra (Baccelli, Cohen
and Quadrat, 1992) are examples of quantitative
models.

The work presented in this paper is a part
of quantitative modeling. The main goal is to
propose an analytical (max, +) model and develop
a procedure able to generate the event-timing
equations. These equations are elaborated from a
not-decision-free Job-Shop system configuration. A
system where the concurrent operations processed
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on the same machine need a decision to solve the
conflicts.

Decision-free DEDS with only synchronization has
been modeled in dioid algebra by (Cohen, Dubois,
Quadrat and Viot, 1985) (Engell, 1989) (Nasri,
Boukezzoula and Habchi, 2011). The different
proposed models are linear in dioid algebra. In this
study, control variables are introduced to the model
to make sequencing decisions. (Baccelli, Cohen and
Quadrat, 1992) noted that non-linear equations are
needed in dioid algebra to model the scheduling
problem.

The dioid algebraic model developed in this research
must generate all feasible schedules by choosing
different values for decision variables. This model is
non-linear in the sense of (max, +) algebra.

Job-Shop scheduling problems belong to the class
of combinatorial problems and are one of the most
difficult problems to solve. They are proved to be
NP-hard (Tamaki and Sannomiya, 1998) (Beatrice
and Mario, 2004) (Wang and Tang, 2011). A non-
linear optimization in (max, +) algebra using global
programming solver is considered in this work.

The remainder of this paper is organized as follows:
Section 2 describes a state-space HVLV systems
scheduling modeling. Section 3 shows an illustrative
example of the scheduling modeling of a (6x6) Job-
Shop using (max, +) algebra. Next, a nonlinear
optimization technique in (max, +) algebra is applied
to minimize the makespan and the total tardiness
subject to JIT production. Concluding remarks and
future research directions are presented in section
5.

2. HVLV SYSTEMS SCHEDULING MODELING

The focus of this section concerns the development
of an approach to generate event-timing equations
directly from the machine interconnections for a
deterministic and not-decision free Job-Shop HVLV
system.

As mentioned above, the DEDS models developed
so far can be classified into two major categories:
untimed and timed models (Table 1). Untimed
models emphasize state or event sequences of a
DEDS and ignore the holding times of a system
in every state or event. Such models like PN are
usually employed in order to answer questions of
a logical or qualitative nature. Timed models, on
the other hand, are used to answer questions
which relate to performance (mean holding times,
meeting due dates of products, etc). Timed petri
nets are an example of these models (Baccelli,
Cohen and Quadrat, 1992) where it is necessary

to obtain a digraph before the timing equations
can be obtained. However, these approaches
cannot model a real scheduling for not-decision-
free manufacturing systems. Moreover, it can be
difficult since their complexities increase rapidly as
the number of machines and/or the number of
operations processed by machines in a production
system is increased.

Table 1: Classification of DEDS models

Timed Untimed
Logical Timed Petri

Nets
Petri Nets

Algebraic Dioid
Algebra

Performance Queuing
Networks,
Markov
Chains,
Simulation

Algebraic models can be a good solution to
overcome the above problem. Also, they provide
many attractive features: they aim to capture the
description of the trajectories of manufacturing
systems in terms of a set of operations on functions
of state and/or events. Baccelli et al (Baccelli,
Cohen and Quadrat, 1992) and Engell (Engell, 1989)
have been demonstrated that the representation
of decision-free manufacturing systems using dioid
algebra is similar to the one employed in Continuous
Variable Dynamic Systems (CVDS) by differential
equations and algebraic operations on functions of
state and inputs (Tamani, Boukezzoula and Habchi,
2009). The models obtained are linear in the
sense of (max, +) algebra. Then, this representation
of decision-free systems allows the formulation
and the application of control concepts such
as, tracking problems, predictive control (Schutter
and Boom, 2003) (Schutter and Boom, 2004),
stability, controllability, and observability in a similar
manner to that of CVDS. However, the linear
(max, +) models proposed in the literature cannot
represent a feasible scheduling for not-decision-
free manufacturing systems. Consequently, the non-
linearity in (max, +) algebra is needed to model the
scheduling problem.

2.1. Approach Principle

The approach presented in this paper is a direct
systematic procedure applicable to a wide class of
manufacturing systems, especially HVLV systems.
The technique to solve the scheduling problem
of HVLV systems considered the problem as a
mathematical programming formulation with the
using of decision variables. These control variables
introduce a non-linearity in the proposed model due
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to their multiplication by the state variables (starting
times of operations). They are used to solve the
conflicts between concurrent operations processed
on the same machine (Table 2).

Table 2: Different forms of (max, +) models

Manufacturing
systems

Linear (max,
+) model

Non-linear
(max, +)
model

Decision-
free systems

Application
of
conventional
control
techniques
(reference
tracking
problems,
internal
model
control,
predictive
control, etc.)

Not-
decision-
free systems

Scheduling
problems
solving

Max-plus algebra is applied here as the modelling
tool in order to represent the scheduling problem
of HVLV systems where relationships between
the starting times of the operations require the
maximum and addition operators. The control
variables used in the proposed model in the case
of minimization of the makespan are the decision
variables (Subsection 2.2) in order to generate
feasible schedules on machines. In the case of
minimization of the total tardiness, the control
variables used in the proposed model are the
decision variables to generate sequencing and the
instants at them raw materials are fed as late as
possible to the system (JIT production) to meet due
dates of products. As a consequence, the internal
buffer levels are kept as low as possible.

However, for the purpose of the mathematical
development we consider the following assumptions:

• A Job-Shop HVLV system is considered.

• The system is deterministic and not-decision-
free.

• The number of jobs to be processed over the
planning horizon is defined in advance.

• Each machine can perform one operation at a
time.

• Routing decisions are already made and each
operation is assigned to a particular machine.

• An operation can start only when all other
events have to be performed before that
particular operation have finished and the
necessary resources are available. A machine
can start processing on a new job as soon as
that machine completes processing its current
running job and there is a job ready to be
processed in the queue.

A dioid is considered as a set D with two operators,
⊕ and ⊗. The operation ⊕ called addition, produces
in D a structure of a commutative monoid and has a
neutral element ϵ called zero. The other operation,
⊗, called multiplication, produces in D a structure
of a monoid and has a neutral element e, called
unity. Max-plus is a dioid, which consists of the
real numbers R extended to include −∞. Max-plus
algebra is used in development of algebraic models
of DEDS (Baccelli, Cohen and Quadrat, 1992). For
all a, b ∈ R∪−∞ the max-plus operators are defined
according to the following equations:

a⊕ b = max(a, b) (1)

a⊗ b = a+ b (2)

2.2. Max-Plus Scheduling Model for HVLV
Systems

The goal here is to establish a (max, +) algebraic
model for the static scheduling problem for the HVLV
systems. The knowledge of the individual operations
for each job, the machines on which each operation
should be executed, and the predecessors and
external starting conditions of each operation (i.e.,
the process plan for each job, the instants at them
raw materials are fed to the system and the starting
date of a new scheduling in a new planning horizon)
provide all the information needed to establish the
model.

The model contains three parts: the first part
considers initial conditions (exogenous conditions
of the beginning of the scheduling), the second
part describes precedence requirements of the
operations and the third part incorporates decision
variables which generate all feasible sequencing on
the same machines in our system (Figure 1).

Within this context, one can then proceed to develop
a (max, +) algebraic state space model for the static
scheduling problem for HVLV systems. Let M denote
the set of all machines available in the system, N the
set of all jobs (products) introduced to the system
and P the set of all the operations on the jobs over
the planning horizon. Let xijk be the start time of the
operation j for the job (product) i on machine k, then
the completion time of operation j for the job i on
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Figure 1: HVLV systems modeling principle.

machine k is equal to its processing time pijk plus its
start time xijk , i.e., xijk + pijk . Two situations may
arise depending on whether operation j is the first
operation on the job (has no predecessors) or that
operation j has some given predecessors.

If operation j ∈ P is the first (i.e., unprecedented)
operation on the job, then its processing start time
xijk is determined by the maximum of either:

• The starting date t of the new scheduling over
the new planning horizon,

• The date ui at which the raw material of its
corresponding product i is fed to the system,

• The completion of other operations (j′ ̸= j,
and j′ ∈ P ), from other products i′ that
require processing on machine k. This is
determined by the decision variables Vijk,i′j′k

that determine which operation must be
processed earlier on machine k.

An expression for this situation may be written
mathematically as follow:

xijk = max(t;ui; pi′j′k + xi′j′k + Vijk,i′j′k) (3)

Using dioid notation, the above expression may be
written as:

xijk = t⊕ ui ⊕ pi′j′k ⊗ xi′j′k ⊗ Vijk,i′j′k (4)

In the second situation, if operation j ∈ P is not the
starting operation (i.e., has predecessors) on the job,
then its processing start time xijk is determined by
the maximum of either:

• The completion time of its direct predecessor,
say n ∈ P , being processed on its
correspondent machine, say m ∈ M ,

• The completion of other operations (j′ ̸= j,
and j′ ∈ P ), from other products i′ that
require processing on machine k. This is

determined by the decision variables Vijk,i′j′k

that determine which operation must be
processed earlier on machine k.

An expression for this situation may be written
mathematically as follow:

xijk = max(pinm + xinm; pi′j′k + xi′j′k + Vijk,i′j′k)
(5)

Using dioid notation, the above expression may be
written as:

xijk = pinm ⊗ xinm ⊕ pi′j′k ⊗ xi′j′k ⊗ Vijk,i′j′k (6)

The above model is non-linear in (max, +) algebra
due to the multiplication in dioid algebra between
the state and control variables. The incorporation of
the decision variables in the model stems from the
fact that the sequencing of operations from different
products on the same machine requires a decision
on the order in which the operations are processed
on the machine such the conflicts are resolved and
precedence constraints are not violated.

To get feasible schedules, constraints are needed to
bound decision variables and these constraints must
satisfy the following conditions:

Vijk,i′j′k + Vi′j′k,ijk = B (7)

max(Vijk,i′j′k;Vi′j′k,ijk) = 0 (8)

where B is chosen small enough and Vijk,i′j′k and
Vi′j′k,ijk are less than or equal to zero.

Or, using (max, +) algebra notation,

Vijk,i′j′k ⊗ Vi′j′k,ijk = B (9)

Vijk,i′j′k ⊕ Vi′j′k,ijk = 0 (10)

The two above constraints mean that: if Vijk,i′j′k =
B, then Vi′j′k,ijk = 0 and if Vijk,i′j′k = 0 , then
Vi′j′k,ijk = B.
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Within this context, if Vijk,i′j′k = B, and referring
to the equations 3 or 5 in the above model, then
operation j ∈ P is processed before operation j′ ∈ P
on machine k ∈ M . This stems from the fact that
the term pi′j′k + xi′j′k + Vijk,i′j′k in 3 and 5 will be
eliminated. If Vijk,i′j′k = 0, then then operation j ∈ P
is processed after operation j′ ∈ P on machine
k ∈ M .

3. ILLUSTRATIVE EXAMPLE

Figure 2: Job-shop HVLV system.

The application of the (max, +) model proposed
in the above section is explored below with an
example of (6x6) Job-Shop system (6 products and
6 machines) (Figure 2).

This example is taken from a real factory environ-
ment (Wang and Tang, 2011). It describes very well
a HVLV system due to the wide variety of products
(six kinds of products) and the processing times
which are relatively long. Data about routing and
processing times for the 6 products are presented
in Table 3.

Table 3: Production data

job Sequence (machine number, processing time)
J1 1(3,1) 2(1,3) 3(2,6) 4(4,7) 5(6,3) 6(5,6)
J2 1(2,8) 2(3,5) 3(5,10) 4(6,10) 5(1,10) 6(4,4)
J3 1(3,5) 2(4,4) 3(6,8) 4(1,9) 5(2,1) 6(5,7)
J4 1(2,5) 2(1,5) 3(3,5) 4(4,3) 5(5,8) 6(6,6)
J5 1(3,9) 2(2,3) 3(5,5) 4(6,4) 5(1,3) 6(4,1)
J6 1(2,3) 2(4,3) 3(6,9) 4(1,10) 5(5,4) 6(3,1)

In this example, the operations of six jobs are
scheduled on six machines (Table 3) and we have
36 state variables xijk (i = 1 : 6, j = 1 : 36 and
k = 1 : 6). For the sake of simplicity and without
loss of generality, to illustrate the proposed model,
we consider only the first operation O113 of product
J1 and the third operation O235 of product J2. The
operation O113 is processed on machine k = 3. It has

no predecessor. The operation O235 is manufactured
on machine k = 5. It has two predecessors: the first
one is O212 which is processed on machine k = 2
and the second one is O223 which is processed on
machine k = 3. Then, the dynamic equations of
the starting times of operations O113 and O235 can
be described by the following (max, +) equations
referring to the model proposed in section 2:

x113 = max(t;u1; p223 + x223 + V113,223; p313

+ x313 + V113,313; p433 + x433

+ V113,433; p513 + x513 + V113,513;

p663 + x663 + V113,663) (11)

x235 = max(p223 + x223; p165 + x165

+ V235,165; p365 + x365 + V235,365;

p455 + x455 + V235,455; p535 + x535

+ V235,535; p655 + x655 + V235,655) (12)

or, using dioid notation the above equations can be
written as:

x113 =t⊕ u1 ⊕ p223 ⊗ x223 ⊗ V113,223 ⊕ p313

⊗ x313 ⊗ V113,313 ⊕ p433 ⊗ x433

⊗ V113,433 ⊕ p513 ⊗ x513 ⊗ V113,513⊕
p663 ⊗ x663 ⊗ V113,663 (13)

x235 =p223 ⊗ x223 ⊕ p165 ⊗ x165

⊗ V235,165 ⊕ p365 ⊗ x365 ⊗ V235,365⊕
p455 ⊗ x455 ⊗ V235,455 ⊕ p535 ⊗ x535

⊗ V235,535 ⊕ p655 ⊗ x655 ⊗ V235,655 (14)

Note that all the dynamic equations of the remainder
operations in the example can be obtained in the
same way as the two above equations.

The dynamic of the system equation can be grouped
in (max, +) matrix form:

X = T ⊕ U ⊕ C ⊗X (15)

where: X is a (36x1) (max, +) state vector which
collects the starting times of operations, T is a
(36x1) (max, +) vector which is composed of the
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beginning dates of the scheduling over the new
planning horizon, U is a (36x1) vector which contains
the different dates at which the raw material of
each product is fed to the system and C is a
(36x36) appropriate (max, +) matrix describing the
relationships among different state variables of the
system. It contains the different decision variables.

4. APPLICATION OF THE (MAX, +) MODEL FOR
THE SCHEDULING OF HVLV SYSTEMS:
NONLINEAR OPTIMIZATION

In this section, the dioid algebraic model is used to
develop the static scheduling of the system. Then, a
non-linear optimization problem in (max, +) algebra
is applied to minimize the makespan and the total
tardiness subject to JIT production.

4.1. Non-linear Optimization for the Makespan
Minimization

Figure 3: Full scheme of makespan optimization.

The objective of this section is to minimize the
makespan using a non-linear optimization in (max,
+) algebra (Figure 3)

Let define the makespan criterion of the HVLV
system as follow:

Cmax = max(Ci) = max(xiwk + piwk) (16)

where Ci is the completion time of product i and w is
the last operation of product i.

or, using the (max, +) notation :

Cmax =
n⊕

i=1

Ci =
n⊕

i=1

(xiwk ⊗ piwk) (17)

where xiwk is the starting time of the last operation
w of product i on machine k and piwk is its

corresponding processing time. Then, the non-
linear optimization scheduling problem into (max, +)
algebra is defined as:

C∗
max = minCmax = min(max(xiwk + piwk)) (18)

Subject to:

Vijk,i′j′k + Vi′j′k,ijk = B (19)

max(Vijk,i′j′k;Vi′j′k,ijk) = 0 (20)

Vijk,i′j′k 6 0 (21)

Vi′j′k,ijk 6 0 (22)

B ≪ 0 (23)

xijk = max(t;ui; pi′j′k + xi′j′k + Vijk,i′j′k) (24)

xijk = max(pinm + xinm; pi′j′k + xi′j′k + Vijk,i′j′k)
(25)

where j = 1 : w and w is the number of operations
in each product i.

Applying the above non-linear optimization problem
to the example of (6x6) Job-Shop HVLV system
shown in section 3 with t = ui = 0 for i =
1 : 6. Then, the obtained optimal value C∗

max =
max(x165 + p165;x264 + p264;x365 + p365;x466 +
p466;x564 + p564;x663 + p663) = 55 time units. The
corresponding schedules on the different machines
based on the proposed (max, +) model are showed
in Figure 4 that shows the order of each job Ji on
each machine k.

The completion times Ci of the different products
i = 1 : 6 are presented in Table 4.
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Figure 4: Operations scheduling on the machines.

Table 4: Completion times of jobs

Jobs J1 J2 J3 J4 J5 J6
Ci 36 54 55 54 55 55

4.2. Results Discussion

As mentioned in Subsection 4.1, the proposed model
associated to a non-linear optimization algorithm in
(max,+) algebra leads to an optimal value of the
makespan C∗

max = 55 time units. A little comparison
between our scheduling technique and the two
methods proposed in the literature (Wang and Tang,
2011) to minimize the makespan, shows the same
values of the optimal makespan (55 time units)
(Figure 5).

Figure 5: Makespan minimization (Wang and Tang, 2011).

In (Wang and Tang, 2011), the authors have been
used the traditional Genetic Algorithm (GA) and
an Improved Adaptive Genetic Algorithm (IAGA) for
solving the minimum makespan problem of the job-
shop scheduling problem presented in Table 3. In
the proposed non-linear (max,+) scheduling model,
we have not parameters to tun which is the
case in (Wang and Tang, 2011) (initial population
chose, crossover probability and mutation probability
tuning). With a such model, we must only choose the
suitable mathematical programming formulation of
the scheduling problem and the appropriate decision
variables to generate different feasible schedules.

4.3. Non-linear Optimization for the Total
Tardiness Minimization Subject to JIT
Production

The objective of this section is to minimize the total
tardiness criterion for a non-linear optimization using
the (max, +) algebra and subject to JIT production
(Figure 6)

Figure 6: Full scheme of total tardiness optimization.

As far as we know, there are few researches about
scheduling problems in the literature that deal with
the total tardiness minimization. Moreover, all these
researches don’t handle the JIT production criterion
in the scheduling problems. In this section, the total
tardiness is minimized, so that the JIT production is
satisfied. Then, let define the following criterion:

Td + Te (26)

or, using the (max, +) notation :

Td ⊗ Te (27)

where :

Td =
n∑

i=1

Ti (28)

and

Te = −
n∑

i=1

ui (29)

or, using the (max, +) notation :
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Td =
n⊗

i=1

Ti (30)

and

Te = −
n⊗

i=1

ui (31)

Note that n is the number of products and Ti =
max(xiwk + piwk −Di; 0), for i = 1 : n, and k = 1 : m
(k is the number of machines).

Where w is the last operation of product i and
xiwk is the starting time of the last operation w of
product i on machine k and piwk is its corresponding
processing time. Di is the due date of the product i.

• Td reflects the due date tracking error,

• Te reflects the control effort (JIT criterion). The
minimization of Te would lead to maximization
of the dates ui at which the raw material of
each product is fed to the system as late as
possible. Consequently, the starting time of the
first operation xi1k of each product i will be
equal to ui.

Then, the non-linear optimization scheduling prob-
lem into (max, +) algebra is defined as:

T ∗ = minT = min(Td + Te) (32)

Subject to:

Vijk,i′j′k + Vi′j′k,ijk = B (33)

max(Vijk,i′j′k;Vi′j′k,ijk) = 0 (34)

Vijk,i′j′k 6 0 (35)

Vi′j′k,ijk 6 0 (36)

B ≪ 0 (37)

xijk = max(t;ui; pi′j′k + xi′j′k + Vijk,i′j′k) (38)

xijk = max(pinm + xinm; pi′j′k + xi′j′k + Vijk,i′j′k)
(39)

Ci = xijk + pijk 6 Di (40)

where Ci is the completion time of product i.

The above non-linear optimization problem is applied
to the example of (6x6) Job-Shop HVLV system
shown in section 3 with t = 0 and for the different
chosen due dates Di (Table 5).Then, the obtained
optimal value T ∗ = −80 time units. This optimal
criterion corresponds to the following completion
times of products (Table 5):

Table 5: Due dates and completion times of jobs

Jobs J1 J2 J3 J4 J5 J6
Di 60 77 55 36 45 55
Ci 60 77 40 36 43 55

The corresponding scheduling on the different
machines based on the proposed (max, +) model is
as follow (Figure 7).

Figure 7: Operations scheduling on the machines.

Table 6: Controlled dates of the first operation of the
products

Jobs J1 J2 J3 J4 J5 J6
ui 33 27 0 4 5 11
xi1k 33 27 0 4 5 11

4.4. Results Discussion

Table 5 shows that the due dates Di (i = 1 : 6) of the
different products are met. Then for all i = 1 : 6, Ci 6
Di. Moreover, Table 6 shows that the JIT production
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criterion is satisfied. Effectively, the starting times of
each first operation of the product i, xi1k, is equal to
the date at which the raw material of each product i,
ui, is fed to the system. Then, the proposed criterion
Te allows the maximization of the input time instants
ui, so that the raw material of products is fed to the
system as late as possible. As a consequence, the
internal buffer levels are kept as low as possible.

5. CONCLUSIONS

This work was directed towards extending (max, +)
algebraic applications for scheduling, optimization,
and control of HVLV systems. Linear (max, +)
models cannot represent a scheduling problem
for a not-decision-free systems. The non-linearity
into dioid algebra is needed for HVLV systems
scheduling. The proposed model incorporates
decision (control) variables as conflicts resolvers
between concurrent operations on the same
machine. Non-linear optimization problem is then
solved into (max, +) algebra to minimize two criteria.
The total tardiness criterion is extended to solve a
JIT production problem. The simulation results show
that the proposed model can be a good tool for the
control and optimization of HVLV systems.

In real-world applications for HVLV systems, various
uncertainty aspects of the system will perturb its
behavior (machines breakdowns, set-up times, etc).
In this context, next research work will be done to
improve the (max, +) model such that it can deal with
a dynamic HVLV systems scheduling.
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