

Moment tensor inversion of Explosive Long Period events recorded on Arenal Volcano, Costa Rica, constrained by synthetic tests

R. Davi, G.S. O'Brien, I. Lokmer, C.J. Bean, Philippe Lesage, M. Mora

► To cite this version:

R. Davi, G.S. O'Brien, I. Lokmer, C.J. Bean, Philippe Lesage, et al.. Moment tensor inversion of Explosive Long Period events recorded on Arenal Volcano, Costa Rica, constrained by synthetic tests. Journal of Volcanology and Geothermal Research, 2010, 194 (4), pp.189-200. 10.1016/j.jvolgeores.2010.05.012. hal-00504737

HAL Id: hal-00504737 https://univ-smb.hal.science/hal-00504737v1

Submitted on 15 Jul2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Moment tensor inversion of Explosive Long Period events recorded on Arenal
2	Volcano, Costa Rica, constrained by synthetic tests.
3	
4	R. Davi ¹ , G.S. O'Brien ^{1, 2} , I. Lokmer ^{1, 2} , C.J. Bean ^{1, 2} , P. Lesage ³ , M.M. Mora. ⁴
5	
6	¹ Seismology and Computational Rock Physics Laboratory, School of Geological
7	Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
8	² Complex and Adaptive Systems Laboratory (CASL), University College Dublin,
9	Belfield, Dublin 4, Ireland.
10	³ Laboratoire de Géophysique Interne et Tectonophysique, CNRS, Université de Savoie,
11	73376 Le Bourget-du-Lac Cedex, France
12	⁴ Escuela Centroamericana de Geología, Universidad de Costa Rica, Ciudad Universitaria
13	Rodrigo Facio, San Pedro de Montes de Oca, 214-2060 San José, Costa Rica.
14 15	Abstract
15	
10	In order to constrain the moment tensor solution of an explosive seismic event recorded
17	In order to constrain the moment tensor solution of an explosive seisnice event recorded
18	on Arenal volcano, Costa Rica, we perform tests using synthetic data. These data are
19	generated using a 3D model including the topography of the volcano and the best
20	estimation of the velocity model available for Arenal. Solutions for (i) the moment tensor
21	components, and (ii) the moment tensor plus single forces, are analysed. When noisy data
22	and mislocated sources are used in the inversion, spurious single forces are easily
23	generated in the solution for the moment tensor components plus single forces. Forces
24	also appear when the inversion is performed using an explosive event recorded on Arenal

25	in 2005. Synthetic tests indicate that these forces might be spurious. However the
26	mechanism is correctly retrieved by the inversion in both solutions. The ability to recover
27	the explosive mechanism for the 2005 event combined with the interpretative aids from
28	the synthetics tests will enable us to invert for the large variation in events observed on
29	Arenal.
30	
31	Keywords: Arenal volcano, moment tensor inversion, single forces, synthetic tests
32	
33	1. Introduction
34	
35	Volcanoes are complex and challenging environments showing a great variety of
36	behaviour. A range of earthquake types are regularly recorded on volcanoes. They
37	include: high frequency tectonic-like events, also known as volcano tectonic events,
38	(VT), explosions, long period events (LP) and tremor. VT events have energy in the
39	range of 2-20 Hz with very similar signatures to tectonic earthquakes. They are due to
40	brittle rock failure, generated by regional tectonic forces, dyke propagation or pore over-
41	pressure (McNutt, 2005). LP events and tremor are normally characterized by strongly
42	peaked spectra. Their energy is concentrated between 0.2 and 5 Hz and they are thought
43	to be caused by fluid movements inside volcanic conduits (Chouet, 2003). Since tremor
44	and LP events seem to have common characteristics, differing only in duration, some
45	authors believe they share the same source mechanism (Chouet, 1996; Neuberg et al.,
46	2000). These types of events often precede and accompany volcanic eruptions, hence a
47	deeper knowledge of their source origin may be helpful in volcanic event forecasting.

48 One of the most common tools used to retrieve the seismic source mechanism is a 49 moment tensor inversion. The combination of moment tensor components represents a 50 system of equivalent forces that produces the same wavefield as the actual physical 51 processes at the source. Inverting for the seismic source mechanism has become a 52 common procedure. Inversions for very long period events (VLP) have been successfully 53 performed (Ohminato et al., 1998; Chouet et al., 2003) as the very long wavelengths are 54 not influenced by structural heterogeneities. However, this is not always the case for 55 inversions of LP events. The shortest wavelengths are sensitive to velocity structures and 56 strong topographic effects (Bean et al., 2008; Lokmer et al., 2007; Lokmer et al., 2008; 57 Métaxian et al., 2009). Such effects introduce many uncertainties in the inversion 58 procedure that can lead to apparently stable, but erroneous solutions (Bean et al., 2008). 59 In fact, due to the complexity of volcanic environments (e.g. the lack of sufficient 60 structural information, the high degree of heterogeneity and the scattering effects due to 61 the pronounced topography), it is quite difficult to recover a unique (and correct) source 62 mechanism. The inclusion of single forces in the inversion procedure makes the recovery 63 of the source mechanism an even more challenging task. However, single forces may be 64 common in volcanic environments and have been modelled in other seismic source 65 studies. Takei and Kumazawa (1994) provide a theoretical justification for the physical existence of these forces. However, an accurate quantification of these forces is not 66 67 available at present. This is due to the fact that an inversion procedure with an increased numbers of free parameters is extremely sensitive to uncertainties in the near-surface 68 69 velocity model (Bean et al., 2008).

71 In this paper, we perform a moment tensor inversion of an explosive event recorded in 72 2005 on Arenal volcano, Costa Rica, using constraints obtained by synthetic tests. 73 Topographical and structural effects are reduced using the best estimation of velocity 74 model available for Arenal volcano and Green's functions are calculated including 15 m 75 resolution digital elevation model of the volcano. In the synthetic tests we assess our 76 ability to retrieve the correct source time function and mechanism when (i) random noise 77 is added to the data, and (ii) the source location is not accurately known. We also 78 investigate how the presence of single forces affects the moment tensor solution. We aim 79 to quantify our ability to accurately recover the true source from real seismic data. The 80 information obtained by performing the synthetic tests is used in the analysis and 81 interpretation of the solution of the inversion performed on real explosion data from 82 Arenal. The methodology used in the calculation of the Green's functions, and in the 83 inversion method, is provided herein. Results of our synthetic tests, the inversion of the 84 real event and the interpretation of the mechanism that generates this event are also 85 presented.

86

87 2. Arenal volcano

88

Arenal is a small strato-volcano located in north-western Costa Rica and is mainly
composed of tephra and lava flows (Soto and Alvarado, 2006); its location and digital
elevation model are shown in Figure 1. It was dormant for several centuries until July
1968 when a Peléan eruption resulted in 78 fatalities and opened three new craters in the
western flank. Arenal's explosive activity is still ongoing today and is preceded, and

94	accompanied, by different types of seismic events. The most common types are LP
95	events, explosions, spasmodic and harmonic tremor, rockfalls and sporadic volcano
96	tectonic swarms (Alvarado and Barquero, 1997). Explosions and LP events have the
97	same frequency range (1-3 Hz), but differ in amplitude. Explosions have larger
98	amplitudes and are accompanied by a large, audible air-shock. The explosion coda often
99	evolves into tremor (Hagerty et al., 2000). Tremor is the most common type of event at
100	Arenal with a duration that can last for several hours and comprises spasmodic and
101	harmonic. Harmonic tremor can be distinguished from spasmodic tremor by their
102	regularly spaced frequency peaks with most of the energy concentrated between 0.9 and 2
103	Hz. Spasmodic tremor energy spans 1-6 Hz. There is no clear difference in the genesis of
104	spasmodic and harmonic tremor; the former can progressively evolve into the latter and
105	vice-versa (Lesage et al., 2006). Most of the tremor exhibits a progressive gliding in
106	frequency that can last tens to hundreds of seconds. The gliding phenomenon can be
107	generated by pressure changes in the fluid inside the conduit (Hagerty et al., 2000). The
108	number of seismic events can be variable during the day. However, in recent decades a
109	decrease in the number and amplitude of explosions has been recognised (Lesage et al.,
110	2006). Arenal's seismicity is often accompanied by gas emissions produced during the
111	explosions and by passive degassing in rhythmic pulses along the edge of the crater
112	(William–Jones et al., 2001). The origin of these seismic events is, at present, not fully
113	understood.

3. Methodology

117 The elastic Green's functions are defined as the Earth's response to an impulsive source 118 generated at a certain point (source location) and propagating to a receiver location in an 119 elastic Earth. The nth-component of the displacement, recorded at position \mathbf{x} and time *t*, 120 can be written as (Aki and Richards, 2002):

121

122
$$u_n(\mathbf{x}, t) = M_{pq}(t) * G_{np,q}(\mathbf{x}, t) + F_p(t) * G_{np}(\mathbf{x}, t), \quad n, p, q = 1, 2, 3 \quad (1)$$

123

where M_{pq} is the force couple or dipole in the pq direction acting at the source, F_p is the 124 single force acting in the p direction, and G_{np} and $G_{np,q}$ represent the n^{th} components of 125 126 the corresponding medium responses (Green's functions) and their derivatives, 127 respectively. The asterisk indicates convolution and the summation convention applies. 128 Volcanoes are the most "promising" environments in which single forces are likely to be 129 found (Takei and Kumazawa, 1994), even if the existence of these single forces in the LP 130 process is, at present, not reliably constrained by experiments or observations. For VLP 131 events, Chouet (2003) attributes single forces to gravitational energy in the source 132 volume due to the ascent of a slug of gas in the volcanic conduit or by a volcanic jet 133 during an explosion. The latter phenomenon was also successfully modelled using single 134 forces in the recent work of Jolly et al. (2010). The reliability of the inversion results are 135 strongly dependent on the accuracy with which the Green's functions are calculated 136 (Lokmer, 2008). In the past, due to computational restrictions, Green's functions were 137 calculated only for a homogeneous half-space excluding topography. This approach leads 138 to misinterpretations because the seismic wavefield is sensitive to layered velocity 139 models and strongly affected by topographical scattering (Bean et al., 2008). However, in

140 the past decade, topography has been included in the calculation of Green's functions 141 (Ohimanto and Chouet, 2007; Neuber and Pointer, 2000; Jousset et al., 2004; Jolly et al, 142 2010). To avoid incorrect interpretations we require detailed information about the 143 medium i.e. a precise velocity model or near-accurate Green's functions relative to the 144 frequencies of interest. At present, detailed velocity models with structural information, 145 particularly related to the layers close to the surface, are extremely rare on volcanoes due 146 to the considerable cost and effort involved in producing such high resolution velocity 147 models. Therefore, synthetic tests provide a powerful tool for constraining the inversion 148 results and improving the reliability of such interpretations.

149

150 To calculate the Green's functions we use 3D-full wavefield numerical simulations 151 including topography and the "best" estimate of the velocity structure retrieved from 152 sounding using the spatial autocorrelation (SPAC) method, Métaxian et al., 1997, and 153 seismic refraction experiments carried out on Arenal in 1997 (Mora et al., 2006). In this 154 study, we use the 3D Elastic Lattice Method (ELM), to simulate wave propagation in the 155 elastic medium (O'Brien and Bean, 2004). To calculate the Green's functions we use a 1-156 D velocity model (Figure 2). This velocity model comprises two major layers following 157 the profile of the topography above a half space medium with velocities of 3.5 km/s for 158 the P-waves (V_p) and 2.0 km/s for the S-waves (V_s) and a maximum density equal to 2500 kg/m³. The numerical domain consists of a 13 x 11 x 6 km³ space where topography 159 160 is derived from the Digital Elevation Model (DEM) of the volcano using a spatial grid step of 15 m. Long wavelengths are simulated using a model of large extent with 161 162 relatively small grid-step. Absorbing boundaries, 900 m thick, are included in the model

163 to avoid edge reflections and ensure the absorption of the longest wavelengths. The top 164 boundary of the model is a free surface including topography. To calculate the Green's 165 functions library for a large number of source locations within a predefined source 166 region, we adopt the Reciprocity Theorem (e.g. Aki and Richards, 2002). Green's functions are calculated over a volume (480 x 300 x 840 m³) of 4735 points located under 167 the crater summit. In addition to calculating the Green's functions for each single point 168 169 source, we also required their spatial derivatives around the source position. Spatial 170 derivatives can be extracted directly from the output of the simulation and are given by 171 the central finite-difference derivative

172

173
$$G_{np,q}(\mathbf{r}, \mathbf{s}) \approx \frac{G_{np}(\mathbf{r}, \mathbf{s} + \Delta q) - G_{np}(\mathbf{r}, \mathbf{s} - \Delta q)}{2\Delta q}$$
 (2)

174

175 where $G_{np,q}(\mathbf{r},\mathbf{s})$ is the spatial derivative of the Green's functions G_{np} around the source 176 position, **s** is the source position, **r** is the receiver position and Δq is the spatial grid 177 spacing. The Green's functions were calculated using a Gaussian source time function 178 with a frequency range of up to 5 Hz and a duration of 15 s. The recording positions for 179 the synthetic data map to the real locations of nine stations deployed on the volcano 180 during a seismic experiment carried out in February 2005, as shown in Figure 1. Since 181 Arenal is quite a dangerous environment (due to the frequent pyroclastic flows and the 182 ballistic bombardment of blocks and bombs), the stations were deployed on the flanks of 183 the volcano but, unfortunately, could not be placed close to the summit. 184

185 In the frequency domain, equation (1) can be written as:

186

187
$$u_n(\mathbf{x}, \omega) = M_{pq}(\omega)G_{np,q}(\mathbf{x}, \omega) + G_{np}(\mathbf{x}, \omega)F_p(\omega)$$
 (3)

188

189 where $u_n(\omega)$, $M_{pq}(\omega)$, $F_p(\omega)$, $G_{np}(\omega)$, $G_{np,q}(\omega)$, are the spectra of the displacements, of 190 the moment tensor components, of the single forces and of the components and of the 191 spatial derivatives of the Green's functions, respectively. The equation is solved 192 separately for each frequency. The results are then transformed into the time domain 193 using an inverse Fourier Transform. Equation (3) can be written in matrix form as: 194

195
$$\mathbf{u} = \mathbf{G}\mathbf{m}$$
(4)

196

where u is the data matrix, G is matrix containing the Green's functions and derivatives,
m is the moment tensor and single forces components' matrix. If N is the number of
seismograms used in the inversion, equation 4 can be also written in an explicit form as;

202

with the assumption (due to the symmetry of the moment tensor) that

205
$$g_{np,q} = \begin{cases} G_{np,q} & p = q \\ G_{np,q} + G_{nq,p} & p \neq q \end{cases}$$
 $n = 1, 2, 3, ... N$ (6)

The quality of our inversion procedure is tested through the evaluation of the misfit (R)
between calculated and observed data. R can be expressed by the following equation:

210
$$R = \frac{(\mathbf{u} - \mathbf{Gm})^T \mathbf{W} (\mathbf{u} - \mathbf{Gm})}{\mathbf{u}^T \mathbf{W} \mathbf{u}}$$
(7)

where W is a diagonal weighting matrix of the quality of the waveforms. It can beexpressed in explicit matrix format as

215
$$W = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_N \end{bmatrix}$$
(8)

217 The lowest value of the misfit R indicates the best solution for **m**. As equation 4 is a

218 linear equation, its least squares solution can be expressed as (Menke, 1984):

220
$$\mathbf{m}^{\text{est}} = (\mathbf{G}^{\mathsf{T}} \mathbf{W} \mathbf{G})^{-1} \mathbf{G}^{\mathsf{T}} \mathbf{W} \mathbf{u}$$
 (9)

222	where the superscript "T" denotes the transpose matrix and \mathbf{m}^{est} is the estimated moment-
223	tensor matrix. Since data recorded at different stations can show different noise
224	signatures, the weight matrix plays an important role in the inversion procedure.
225	
226	4. Description and results of Synthetic Tests
227	
228	The inversion technique is normally very sensitive to a range of effects present in
229	volcanic environments such as those associated with topography, near surface structures
230	and heterogeneities. To test the consistency and limitations of our inversion procedure we
231	performed a series of synthetic tests. In these tests we attempt to (i) investigate our ability
232	to retrieve the correct source time function and mechanism for a fixed source location
233	when random noise is added to our synthetic data, and (ii) analyze how a mislocated
234	source position can influence the inversion solution while highlighting the role played by
235	the single forces.
236	
237	The use of synthetic tests is of crucial importance to contribute to the understanding of
238	the inversion technique and to retrieve the correct mechanism acting on the volcano.
239	Using 3D numerical simulations we generate synthetic signals with a Ricker wavelet
240	source time function with a central frequency of 2 Hz, shown in Figure 3. The source is
241	positioned under the crater summit where the real source is most likely to be located
242	(Benoit and McNutt, 1997; Hagerty et al., 2000; Mora et al., 2001; Lesage et al., 2006).
243	Source locations are not fully constrained at depth but the epicenters are probably located
244	in a small area centered under the active crater (Métaxian et al., 2002). We fix our source

point at a depth of 200 meters beneath the crater summit. The mechanism simulated is an explosion ($M = 10^{12}$ Nm). No single forces are included. The inversion was performed for both a moment tensor plus single forces (MT+SF), and moment tensor only (MT).

249 It is important to note that in the following tests the moment tensor parts of the source solution are expressed in 10^{12} Nm, while the force parts are expressed in 10^{9} N. This is 250 due to the fact that a force of 10^9 N will produce a displacement with the same amplitude 251 of a moment of 10^{12} Nm if their radiation patterns are ignored (radiation pattern can be 252 253 ignored because of the good azimuthal coverage of the deployment). We validate (not 254 shown here) that this holds for our station configuration, i.e. that the radiation patterns of 255 the obtained moments and forces do not introduce significant deviation from the general 256 rule outlined above. Consequently, if we plot moment and forces using the same scale, 257 forces will not be visible in the diagrams even if they contribute considerably to the total 258 amplitude of the signals.

259

260 The first test aims to show the ability of our inversion code to retrieve the exact mechanism and source time function. Since we used the exact Green's functions 261 262 calculated for the exact source position, the correct solution is expected to be retrieved. 263 Figure 4 shows the results of the test for the moment tensor components plus single 264 forces (MT+SF) in the left panel and moment tensor only (MT) in the right panel using 265 the field location of the nine stations. Solutions are characterized by a small value of the misfit (approximately equal to zero). Since the source time function and the mechanism 266 267 are perfectly recovered by the inversion, and the value of R is small, we can affirm that

the correct solution is retrieved by our inversion code for both solutions (MT and
MT+SF). Table 1 lists the values of the misfits of the inversions performed using
synthetic and real data.

271

272 Since data recorded on volcanoes can often have a low signal-to-noise ratio, we attempt 273 to simulate a real situation by adding noise to our synthetic data. In the frequency range 274 of interest, we contaminate our synthetic dataset with random noise derived from the 275 noise level of the real data recorded on Arenal. These data show a low level of 276 contamination of noise equally distributed at all the stations. The amplitude of the noise is 277 within 10% of the average rms amplitude (signal-to-noise ratio, SNR = 10). The 278 inversion is performed for the moment tensor components and the moment tensor 279 components plus single forces. Results of the test are illustrated in Figure 5. Spurious 280 single forces appear in the MT+SF inversion solution. Since the amplitude of the noise is 281 small, the solution is not dominated by the spurious forces and the source time function and explosive mechanism are correctly recovered by both inversions (see Mxxx, Myy, Mzz 282 283 components for MT and MT+SF solution). In order to test how larger noise amplitudes 284 influence the solution we increased the noise level to 50% of the average rms amplitude, 285 which could be the case if strong tremor was recorded simultaneously with LP events. 286 The amplitude of the spurious forces increases with the increase in noise level. As shown 287 in Figure 6 (right panel) the MT solution remains stable and correct, while in the case of 288 MT+SF the spurious single forces strongly contaminate the solution. The source time 289 function and mechanism recovered along the diagonal components of the moment tensor 290 solution (MT+SF) are no longer correctly retrieved and the solutions do not look stable.

This leads to the conclusion that noise introduces a larger error into the inversion with more free parameters.

294 Since spurious single forces can be generated when noisy data are used in the inversion, 295 we want to investigate how the presence of real single forces can influence the solution. 296 In order to understand the role played by single forces in the inversion procedure for both 297 MT and MT+SF solution, we perform synthetic tests in which different geometries are 298 simulated (e.g. pure volumetric source and a vertical crack with the normal parallel to the 299 x direction) along with including a strong single force in the west-east (x) direction. 300 Again twelve stations have been used along with a signal to noise ratio of 10. Results for the pure volumetric source ($M = 10^{12}$ Nm) and single force ($F = 10^{9}$ N) are shown in 301 302 Figure 7. Solutions for the moment tensor components (Figure 7, right panel) are 303 correctly retrieved by the inversion procedure even though a real single force is included 304 in the actual input source. In the solution for the MT+SF (Figure 7, left panel), spurious 305 single forces are generated in the vertical and north-south directions, in addition to larger 306 amplitudes along the z direction. The amplitude of the west-east force is successfully 307 retrieved, while the source-time function exhibits "ringing" in the tail of the retrieved 308 signal. Results for a vertical crack with single west-east horizontal force are shown in 309 Figure 8. The MT inversion solution (Figure 8, right panel) is well resolved, but spurious 310 single forces are again generated for the MT+SF solution, left panel of Figure 8. For the 311 vertical crack the spurious force along the z direction has a slightly larger amplitude than 312 the one generated for a pure volumetric source. For both geometries along the off-313 diagonal components, a small non-volumetric component is generated. The generation of

this component can be considered as an artifact of the inversion procedure and it does notsignificantly affect the solution.

317 The same test has been performed using an input single force along the vertical direction. 318 The MT solutions are correct for pure volumetric sources and vertical crack geometries. 319 In the solution for MT+SF, the moment tensor part and the vertical force are again 320 correctly retrieved while spurious single forces are present in the north-south and west-321 east directions. Since the same solutions have been obtained using a west-east and a 322 vertical input force, only solutions for the horizontal force is presented. 323 324 Finally a test is performed to analyze how the solution of the moment tensor inversion for 325 MT and MT+SF is influenced when an incorrect source position is used. The signal to 326 noise ratio is again 10. With this test we aim to resemble a realistic, and quite common, 327 situation in which the correct position of the seismic source is unknown and difficult to 328 determine. The mislocated source is fixed in a positioned 240 m in the x-direction, 345 m 329 in the y-direction and 500 m in the z-direction away from the correct source (located 330 under the crater summit at a depth of 200 m). In the test, an explosive source mechanism 331 has been simulated with no single forces included in the inversion. The solution is shown 332 in Figure 9. For the MT solution the explosive mechanism and the Ricker-like wavelet 333 source time function are well retrieved by the inversion. In the MT+SF solution spurious 334 single forces are generated, particularly in the z-direction. The amplitudes of the spurious 335 single forces originating from a mislocated source position are comparable to the 336 amplitudes of the forces generated when noise is added to our synthetic data (see Figure 5

and 9). This leads to the conclusion that in the presence of a noise with amplitude within
10% of the average rms, the solution is insensitive to the inaccurate location of the
source.

340

- **5. Discussion of synthetic tests**
- 342

343 We performed the synthetic tests in order to constrain the inversion of the real data from 344 Arenal volcano. In particular, we wanted to investigate how different signal to noise 345 ratios, and errors in the source locations, influence the inversion solutions. We also tested 346 the inversion code using synthetic data generated with 3D numerical simulations. We 347 have shown that results for noisy data give stable MT solutions in which the source time 348 function and mechanism are correctly retrieved. In the case where forces are allowed in 349 the solutions (MT+SF), spurious single forces are generated with the largest amplitudes 350 in the z-direction. When the signal to noise ratio decreases, the amplitude of the spurious 351 single forces increases, strongly influencing the solution. When the signal to noise ratio is 352 decreased to 2, the source time function and mechanism are no longer retrieved in the 353 MT+SF solution. In addition, the spurious single forces entirely dominate the solution. 354 Finally, we tested the sensitivity of the inversion to source mislocation. In this case the 355 correct source time function and mechanism are correctly retrieved for the MT solution, 356 while solutions for the MT+SF give rise to spurious single forces. Since both the source 357 mislocation and noisy environment produced spurious single forces in MT+SF solution, we investigated the possibility of neglecting the forces in our inversions, i.e. inverting for 358 359 the MT solution only, even if actual single forces are present in the source. We used two

360 mechanisms, a pure volumetric source and a vertical crack, both with a strong horizontal 361 single force (west-east direction). In both cases the solutions for the MT were correct. In 362 the MT+SF solutions, the moment tensor part and the true single force are correct, while 363 spurious single forces are generated on the other single force components. The same 364 results are obtained using a strong vertical input force.

365

366 From the obtained results we can affirm that spurious single forces are easily generated 367 under conditions common on volcanoes, such as noisy data and mislocated source 368 positions. Hence, particular care should be taken when interpreting the forces obtained 369 from the inversion of real data. On the contrary, for the station configuration in this study, 370 the MT solutions are always correct in the tests made, even if the actual single forces are 371 neglected in the inversion. This leads us to the conclusion that, in the presence of a well 372 constrained velocity model, MT solutions can be trusted even when noisy data are used in 373 the inversion and that real forces, if present, will not affect this solution. It is important to 374 note that the latter result is valid for Arenal volcano with this station distribution but 375 cannot be generalized for all volcanoes. Separate tests for each specific site and station 376 distribution should be performed. Performing these synthetic tests using the station 377 distribution from the 2005 seismic installation provides us with better understanding of 378 how different uncertainties in our data map onto the moment tensor solution. This will 379 allow us to reliably interpret the results from the inversion of the real data catalogue. An 380 example of an inversion of a single explosive event recorded in February 2005 is 381 presented in the following section.

383 6. Application to real data

During a seismic experiment, carried out from the 10th to the 21st of February 2005, nine 385 386 Güralp CMG40T seismometers, with mini-Titan recorders were deployed on Arenal 387 volcano. This temporary network recorded several events per day. From this database a signal accompanying an explosion, occurring on the 14th of February at 21.40, was 388 389 selected for moment tensor inversion (Figure 10). 390 391 Métaxian et al. (2002) and Lesage et al. (2006) reported on signals recorded during 392 previous experiments carried out on Arenal in 1997. These signals, coming from the same 393 source region, have durations of only 7 s (e. g. path effects are not longer than 7 s), which 394 suggests that our 100 s long signals do not only represent path effects, but rather a 395 complicated source process or an amalgamation of several processes. This is apparent 396 from the spectrogram in Figure 10, where the onset of the signal has a broad spectrum 397 followed by the separated spectral lines. These lines could be interpreted as a harmonic 398 tremor triggered by an initial disturbance (Lesage et al., 2006). Although we consider our 399 velocity model as a reasonable approximation of the real structure, even small 400 uncertainties can prevent us from correctly inverting for such a long signal. This is 401 because uncertainties in the velocity model will primarily change the coda of the signal, 402 so in the case of a long source process this error accumulates with the time. For these 403 reasons, we will invert for the "trigger" part of the signal only. In order to analyze how, 404 and if, time-windowing of the signal influences our inversion we perform an additional 405 synthetic test. In this test we simulate an explosive mechanism (no single forces are

406 included) using synthetic signals generated by a 40 second long source time function. The 407 inversion is performed for the moment tensor components and moment tensor component 408 plus single forces for a source located 200 m under the crater summit. The duration of 409 both Green's functions and signals are reduced in the inversion code to 15 seconds and 410 tapered. Figure 11 shows the solutions for the MT+SF (left panel) and the MT (right 411 panel). In the solution for moment tensor components plus single forces, spurious single 412 forces are generated along the horizontal and vertical directions. The moment tensor 413 components for both solutions (with and without single forces allowed in the inversion) 414 are analyzed with the principal components analysis (Vasco, 1989). This analysis is based 415 on the singular value decomposition of the moment tensor components. Both solutions 416 are found to consist of 94% isotropic components. The amplitude of the source time 417 function is well retrieved by the inversion. This leads us to the conclusion that the 418 retrieval of the correct source mechanism is not influenced by reducing the length of the 419 signal and by using only the initial trace of the event.

420

421 To perform the inversion on the recorded event, after the deconvolution for instrument 422 responses, the data is converted from velocity to displacement measurements. The energy 423 peak is between 0.8 - 2 Hz, thus the signals are filtered within this band. The quality of 424 the inversion is again evaluated through the analysis of the misfit R. Solutions for 425 moment tensor components plus single forces, and moment tensor components only, are 426 analyzed. Nine stations have been utilized in the inversion. The location of the source is 427 constrained through the inversion procedure performing a grid search within the volume 428 of possible source points. The dimensions and location of the source volume were

429 restricted to possible locations identified in previous work carried out on Arenal (Hagerty 430 et al., 2000; Métaxian et al., 2002), according to which the source is likely to be located 431 in a small area with a radius of 0.3 km around the crater summit and at a depth of no 432 more than 600 meters. The values of the misfit are evaluated for accuracy of the solution; 433 the best is defined by the lowest misfit. Only misfits lower than 0.5 have been considered. 434 The low misfits are mostly concentrated in the north-west corner of our volume. Small 435 variations of the source position inside this volume do not alter the inversion results. This 436 was also seen with the source mislocation synthetic tests. Calculated and observed data 437 are compared in Figure 12 while the results of the inversion are shown in Figure 13. 438 Single forces, generated in east-west, north-south, and vertical direction appear in the 439 solution. F_z has a larger amplitude than F_x and F_y . Our synthetic tests demonstrated that 440 spurious single forces are easily generated with this station configuration. Therefore, 441 given the synthetic results, we cannot be sure if they are real or spurious. Furthermore, 442 we have shown that the solution for moment tensor components is relatively stable. For 443 these reasons we have concentrated on the solution for MT only, analyzing it using the 444 principal components analysis. The results give a strong isotropic component (87%) with 445 a small percentage of compensate linear vector dipoles (CLVD) (9%) and double couple 446 components (4%). Since our previous test showed spurious off-diagonal components, we 447 may not rely on the deviatoric part of the solution. These results lead us to the conclusion 448 that the mechanism generating this event is, as expected, an explosion. Assuming that the 449 shear modulus (μ) is 10 GPa, the estimated volume change (ΔV) associated with this explosive event is 68 m³ ($\Delta V = \mu M_0$, where M_0 is the scalar seismic moment). The source 450 451 position was located at roughly 200 meters beneath the crater summit. Following the

approach of Jolly et al. (2010), we performed the inversion for different source depths;
the isotropic component percentage remains stable inside the source location volume with
a maximum value of 85%, but the relative percentage of CLVD and double couple
changes. Therefore, given the results from the synthetic tests, and considering that an
inversion of the explosive event produces an isotropic solution, we are confident that the
MT inversion can be applied to the data recorded during this deployment.

458

459 **7.** Conclusions

460

461 In this paper we present synthetic tests performed to examine how the errors involved in 462 the moment tensor inversion influence the correct retrieval of the source time function 463 and mechanism in the volcanic setting of Arenal volcano. In particular we focus our 464 attention on how the signal-to-noise-ratio, and a mislocated source position, influence the results of the inversion performed for moment tensor components and moment tensor 465 466 components plus single forces. We show that spurious single forces are easily generated 467 when noisy data and mislocated source positions are included in the inversion. However, 468 we find that the inversion for MT only gives the correct MT components of the solution 469 even when the actual single forces are present in the source. This suggests that for this 470 volcano, and this station configuration, we should be careful in attaching physical 471 meaning to single forces. This information is used in the interpretation of the results of an 472 inversion for an explosive event recorded on Arenal in 2005. Analyzing the solution with 473 the principal components analysis of Vasco (1989), we are able to recover a 474 predominantly explosive mechanism for the analyzed event. Performing the inversion for

475	different source depth shows the stability of the isotropic component present in the
476	solution. This allows us to confidently invert for the different classes of data recorded on
477	Arenal in 2005 in order to retrieve and compare the source mechanisms generating a
478	range of observed events.
479	
480	Acknowledgements
481	
482	This work has been funded by Science Foundation Ireland (SFI). The authors wish to
483	acknowledge the Irish Centre for High-End Computing (ICHEC) for providing
484	computational facilities. We would also like to thank Dr Louis De Barros and Dr Shane
485	Tyrrell for useful comments on the manuscript. The fieldwork was partly supported by
486	the European Commission, 6 th Framework Project – 'VOLUME', Contract No. 018471,
487	INSU-CNRS (ACI Risques naturels et changements climatiques), Université de Savoie
488	(BQR B2005-09), and projects n° 113-A6-503 and 113-A7-511 from Universidad de
489	Costa Rica and Instituto Costarricense de Electricidad. We thank the staff of Escuela
490	Centroamericana de Geología, Universidad de Costa Rica, and Instituto Costarricense de
491	Electricidad for their efficient logistical support. We would also like to thank P. Jousset
492	and an anonymous reviewer for detailed reviews which greatly improved the manuscript.
493	
494	References
495	
496	Aki, K. & Richards, P. G, 2002. Quantitative Seismology, 2nd ed., University

497 Science Books, Sausalito, California, 700 pp.

499	Alvarado, G., Barquero, R., 1997. Las señales sísmicas del volcán Arenal (Costa Rica) y
500	su relación con las fases eruptivas (1968–1986). Ciencia e Tecnologia, 11 (1), 15–35.
501	
502	Bean, C., Lokmer, I., O'Brien, G., 2008. The influence of near-surface on long-period
503	(LP) seismic signals and on moment tensor inversions: Simulated examples from Mt.
504	Etna. Journal of Geophysical Research, 113, B08308, doi:10.1029/2007JB005468.
505	
506	Benoit, J.P. and McNutt, S.R., 1997. New constraints on source processes of volcanic
507	tremor at Arenal Volcano, Costa Rica, using broad-band seismic data. Geophysical
508	Research Letters, 24, 449-452.
509	
510	Chouet, B. A., 1996. Long-period volcano seismicity: its source and use in eruption
511	forecasting. Nature, 380, 309-316.
512	
513	Chouet, B. A., 2003. Volcano Seismology. Pure and Applied Geophysics, 160 (3), 739-
514	788.
515	
516	Hagerty, M.T., Schwartz, S.Y., Garcés, M.A., Protti, M., 2000. Analysis of seismic and
517	acoustic observations at Arenal volcano, Costa Rica, 1995–1997. Journal of Volcanology
518	and Geothermal researchResearch, 101, 27-65.
519	
520	Jolly, A., Sherburn, S., Jousset, P., and Kilgour, G., 2010. Eruption source processes

521	derived from seismic and acoustic observations of the 25 September 2007 Ruapehu
522	eruption North Island, New Zealand. Journal of Volcanology and Geothermal Research,
523	191, 33–45.
524	
525	Jousset, P., Neuberg, J., and Jolly, A., 2004. Modelling low-frequency earthquakes in
526	a viscoelastic medium with topography. Geophysical Journal International, 159, 776-802.
527	
528	Lesage, P., Mora, M.M, Alvarado, G., Pacheco, J., Métaxian, J. P., 2006. Complex
529	behavior and source model of the tremor at Arenal volcano, Costa Rica. Journal of
530	Volcanology and Geothermal Research, 157, 49–59.
531	
532	Lokmer, I., Bean, C.J., Saccorotti, G., Patanè, D., 2007. Moment tensor inversion of LP
533	events recorded on Etna in 2004 using constraints obtained from wave simulation tests.
534	Geophysical Research Letters, 34, L.22316, doi:10.1029/2007GL031902.
535	
536	Lokmer, I., 2008. Long period seismic activity and moment tensor inversion in volcanic
537	environments: Application to Mount Etna. Unpublished Ph.D. Thesis, University College
538	Dublin, Ireland.
539	
540	Lokmer, I., Saccorotti, G., Di Lieto, B., Bean, C. J., 2008. Temporal evolution of long-
541	period seismicity at Etna Volcano, Italy, and its relationships with the 2004-2005
542	eruption. Earth and Planetary Science Letters, 266, 205-220.
543	

McNutt, S. R. (2005). Volcanic Seismology. Annual Review of Earth and Planetary
Sciences, 33 (1), 461-491, doi:10.1146/annurev.earth.33.092203.122459.

546

547 Menke, W., 1984. Geophysical data analysis: Discrete inverse theory. First edition,
548 Academic Press Inc., Orlando, Florida, 260 pp.

549

Métaxian, J.P., Lesage, P., Dorel, J., 1997. Permanent tremor of Masaya volcano,
Nicaragua: wavefield analysis and source location. Journal of Geophysical Research, 102,
22529–22545.

553

Métaxian, J.P., Lesage, P., Valette, B., 2002. Locating sources of volcanic tremor and
emergent events by seismic triangulation: Application to Arenal volcano, Costa Rica.
Journal of Geophysical Research, 107, B10, 2243, doi:10.1029/2001JB000559.

557

Métaxian, J.P., O'Brien, G.S., Bean, C.J., Valette, B., Mora, M., 2009. Locating volcanoseismic signals in the presence of rough topography: wave simulations on Arenal
volcano, Costa Rica. Geophysical Journal International, 179, 3, doi: 10.1111/j.1365246X.2009.04364.x

562

- 563 Mora, M.M, Lesage, P., Dorel, J., Bard, P., Metaxian, J.P., Alvarado G. E., Leandro C.,
- 564 2001. Study of seismic effects using H/V spectral ratios at Arenal Volcano, Costa Rica.
- 565 Geophysical Research Letters, 28, n.15, 2991-2994.

567	Mora, M.M., Lesage, P., Valette, B., Alvarado, G.E., Leandro, C., Metaxian, J. P., Dorel,
568	J., 2006. Shallow velocity structure and seismic site effects at Arenal volcano, Costa
569	Rica. Journal of Volcanology and Geothermal Research, 152, 121-139.
570	
571	Neuberg, J. and Pointer, T., 2000. Effects of volcano-topography on seismic broadband
572	waveforms. Geophysical Journal International, 143, 239-248.
<i>570</i>	

- 573
- 574 Neuberg, J., Luckett, R., Baptie, B., and Olsen, K., 2000. Models of tremor and low-

575 frequency earthquake swarms on Montserrat. Journal of Volcanology and Geothermal576 Research, 101, 83–104.

577

578 O'Brien, G. S., Bean, C. J., 2004. A 3D discrete numerical elastic lattice method for 579 seismic wave propagation in heterogeneous media with topography. Geophysical 580 Research Letters, 31, L14608, doi:10.1029/2004GL020069.

581

582 Ohminato, T. and Chouet, B., 1997. A free-surface boundary condition for inclusing

583 3D topography in the finite-difference method. Bulletin of the Seismological Society of

584 America, 87(2), 494–515

585

Ohminato, T., Chouet, B. A., Dawson, P., Kedar, S., 1998, Waveform inversion of very
long period impulsive signals associated with magmatic injection beneath Kilauea
Volcano, Hawaii. Journal of Geophysical Research, 103 (B10), 23839-23862

	590	Soto, G.J	., Alvarado	G.E.	, 2006. Eru	ptive history	v of Arenal	Volcano.	, Costa Rica	, 7 ka to
--	-----	-----------	-------------	------	-------------	---------------	-------------	----------	--------------	-----------

591 present. Journal of Volcanology and Geothermal Research, 157, 254-269.

592

- 593 Takei, Y. & Kumazawa, M., (1994). Why have the single force and torque been
- 594 excluded from seismic source models? Geophysical Journal International, 118 (1), 20-30.
- 595
- 596 Vasco, D. W., (1989). Deriving source-time functions using principal component
- analysis, Bulletin of the Seismological Society of America, 79 (3), 711-730.
- 598
- 599 Williams-Jones, G., Stix, J., Heiligmann, M., Barquero, J., Fernandez, E., Gonzalez,
- 600 E.D., 2001. A model of degassing and seismicity at Arenal volcano, Costa Rica. Journal

of Volcanology and Geothermal Research, 108, 121–139.

602

603 Figures captions

604

605 Figure 1. Digital elevation model and station configuration used in our synthetic tests.

606 Arenal location is shown in the right-hand panel. The triangles represent the locations of

607 the stations deployed on Arenal during a seismic experiment carried out in 2005.

- 608
- 609 Figure 2. 1D velocity model used for Arenal. The blue and red lines indicate the P-wave

610 (V_p) and S-wave (V_s) velocities versus depth, respectively.

Figure 3. Ricker wavelet source time function (amplitude expressed in 10^{-12} Nm) used to generate synthetic signals (top panel) and its spectrum (bottom panel).

614

Figure 4. Moment tensor component plus single forces solution (left panel) and momenttensor components solution (right panel) for synthetic data generated with an explosive

mechanism and the Ricker wavelet source time function shown in Figure 4.

618

617

619 Figure 5. Moment tensor component plus single forces solution (left panel) and moment

620 tensor components solution (right panel) obtained when random noise is added to the

621 synthetic data (noise amplitude is equal to 1/10th of the signal amplitude). Spurious single

622 forces are generated in the solution for moment tensor components plus single forces.

623 The correct solution should be: $F_x = 0$; $F_y = 0$; $F_z = 0$; $M_{xx} = 1$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; 624 $M_{xz} = 0$; $M_{yz} = 0$.

625

Figure 6. Same as Figure 5, with noise amplitude equal to 1/2 of the signal amplitude.

627 Spurious single forces are generated in the solution for moment tensor components plus

628 single forces, strongly affecting the MT+SF solution.

629

630 Figure 7. As Figure 5 (noise amplitude equal to $1/10^{\text{th}}$ of the signal amplitude). In this

631 case, a pure volumetric source geometry with a single force was simulated. The real force

632 is correctly retrieved while spurious single forces are generated in the other direction. The

633 correct solution should be: $F_x = 2$; $F_y = 0$; $F_z = 0$; $M_{xx} = 1$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; $M_{xz} = 0$

634 0; $M_{yz} = 0$.

Figure 8. As Figure 5 (noise amplitude equal to $1/10^{th}$ of the signal amplitude) for a crack plus single force source. The real force is correctly retrieved while spurious single forces are generated in the other directions. The correct solution should be: $F_x = 2$; $F_y = 0$; $F_z = 0$; $M_{xx} = 2$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; $M_{xz} = 0$; $M_{yz} = 0$ (moment tensor inversion for vertical crack with $\lambda = 2\mu$ where λ and μ are the Lamé parameters).

641

Figure 9. Same as Figure 5 (noise amplitude equal to $1/10^{th}$ of the signal amplitude) for an incorrect source position. The mislocated source position does not affect the solution for moment tensor components. The correct time solution should be: $F_x = 0$; $F_y = 0$; $F_z =$ 0; $M_{xx} = 1$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; $M_{xz} = 0$; $M_{yz} = 0$.

646

Figure 10. Explosion recorded on 14th February, 2005 at 21.40. On the left, the original
waveform (top panel), spectrogram (middle panel) and filtered (0.8-2 Hz) waveform
(bottom panel) are shown. The black rectangle highlights the portion of the signal for
which we performed the moment tensor inversion.

651

Figure 11. Moment tensor component plus single forces solution (left panel) and moment tensor components solution (right panel) obtained using a 40 second long source time function (see text for details). The top right panel shows the original source time function of 40 s. The black rectangle highlights the portion of the source used in the inversion.

657	Figure 12. Calculated (red line) and observed seismogram (blue line) are compared for

- the waveform inversion of the explosion that occurred on the 14th February 2005 at 21.40 658
- (amplitude expressed in 10^{-4} m). 659
- 660
- Figure 13. Moment tensor component plus single forces solution (left panel) and moment 661
- 662 tensor components solution (right panel) obtained by waveform inversion of the
- explosion that occurred on the 14th February 2005 at 21.40. 663

- 664
- 665 Table 1. The values of the misfit (R) obtained for the synthetic tests and for the inversion
- of the explosive event that occurred on the 14th of February 2005, are listed for both 666
- moment tensor components, solutions and moment tensor components plus single forces 667
- solutions. 668
- 669

1	Moment tensor inversion of Explosive Long Period events recorded on Arenal
2	Volcano, Costa Rica, constrained by synthetic tests.
3	
4	R. Davi ¹ , G.S. O'Brien ^{1, 2} , I. Lokmer ^{1, 2} , C.J. Bean ^{1, 2} , P. Lesage ³ , M.M. Mora. ⁴
5	
6	
7	¹ Seismology and Computational Rock Physics Laboratory, School of Geological
8	Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
9	² Complex and Adaptive Systems Laboratory (CASL), University College Dublin,
10	Belfield, Dublin 4, Ireland.
11	³ Laboratoire de Géophysique Interne et Tectonophysique, CNRS, Université de Savoie,
12	73376 Le Bourget-du-Lac Cedex, France
13	⁴ Escuela Centroamericana de Geología, Universidad de Costa Rica, Ciudad Universitaria
14	Rodrigo Facio, San Pedro de Montes de Oca, 214-2060 San José, Costa Rica.
15	
16	Abstract
17	
18	In order to constrain the moment tensor solution of an explosive seismic event recorded
19	on Arenal volcano, Costa Rica, we perform tests using synthetic data. These data are
20	generated using a 3D model including the topography of the volcano and the best
21	estimation of the velocity model available for Arenal. Solutions for (i) the moment tensor
22	components, and (ii) the moment tensor plus single forces, are analysed. When noisy data
23	and mislocated sources are used in the inversion, spurious single forces are easily

24	generated in the solution for the moment tensor components plus single forces. Forces
25	also appear when the inversion is performed using an explosive event recorded on Arenal
26	in 2005. Synthetic tests indicate that these forces might be spurious. However the
27	mechanism is correctly retrieved by the inversion in both solutions. The ability to recover
28	the explosive mechanism for the 2005 event combined with the interpretative aids from
29	the synthetics tests will enable us to invert for the large variation in events observed on
30	Arenal.
31	
32	Keywords: Arenal volcano, moment tensor inversion, single forces, synthetic tests
33	
34	1. Introduction
35	
36	Volcanoes are complex and challenging environments showing a great variety of
37	behaviour. A range of earthquake types are regularly recorded on volcanoes. They
38	include: high frequency tectonic-like events, (also known as volcano tectonic events,
39	(VT), explosions, long period events (LP) and tremor. VT events have energy in the
40	range of 2-20 Hz with very similar signatures to tectonic earthquakes. They are due to
41	brittle rock failure, generated by regional tectonic forces, dyke propagation or pore over-
42	pressure (McNutt, 2005). LP events and tremor are normally characterized by strongly
43	peaked spectra. Their energy is concentrated between 0.2 and 5 Hz and they are thought
44	to be caused by fluid movements inside volcanic conduits (Chouet, 2003). Since tremor
45	and LP events seem to have common characteristics, differing only in duration, some
46	authors believe they share the same source mechanism (Chouet, 1996; Neuberg et al.,

47	2000). These types of events often precede and accompany volcanic eruptions, hence a
48	deeper knowledge of their source origin may be helpful in volcanic event forecasting.
49	One of the most common tools used to retrieve the seismic source mechanism is a
50	moment tensor inversion. The combination of moment tensor components represents a
51	system of equivalent forces that produces the same wavefield as the actual physical
52	processes at the source. Inverting for the seismic source mechanism has become a
53	common procedure. Inversions for very long period events (VLP) have been successfully
54	performed (Ohminato et al., 1998; Chouet et al., 2003) as the very long wavelengths are
55	not influenced by structural heterogeneities. However, this is not always the case for
56	inversions of LP events. The shortest wavelengths are sensitive to velocity structures and
57	strong topographic effects (Bean et al., 2008; Lokmer et al., 2007; Lokmer et al., 2008;
58	Métaxian et al., 2009). Such effects introduce many uncertainties in the inversion
59	procedure that can lead to apparently stable, but erroneous solutions (Bean et al., 2008).
60	In fact, due to the complexity of volcanic environments (e.g. the lack of sufficient
61	structural information, the high degree of heterogeneity and the scattering effects due to
62	the pronounced topography), it is quite difficult to recover a unique (and correct) source
63	mechanism. The inclusion of single forces in the inversion procedure makes the recovery
64	of the source mechanism an even more challenging task. However, single forces may be
65	common in volcanic environments and have been modelled in other seismic source
66	studies. Takei and Kumarawa-Kumazawa (1994) provide a theoretical justification for the
67	physical existence of these forces. However, an accurate quantification of these forces is
68	not available at present. This is due to the fact that an inversion procedure with an

69	increased numbers of free parameters is extremely sensitive to uncertainties in the near-
70	surface velocity model (Bean et al., 2008).
71	
72	In this paper, we perform a moment tensor inversion of an explosive event recorded in
73	2005 on Arenal volcano, Costa Rica, using constraints obtained by synthetic tests.
74	Topographical and structural effects are reduced using the best estimation of velocity
75	model available for Arenal volcano and Green's functions are calculated including 15 m
76	resolution digital elevation model the real topography of of the volcano. In the synthetic
77	tests we constrain assess our ability to retrieve the correct source time function and
78	mechanism when (i) random noise is added to the data, and (ii) the source location is not
79	accurately known. We also investigate how the presence of single forces affects the
80	moment tensor solution. We aim to quantify our ability to accurately recover the true
81	source from a-real seismic data. world situation. The information obtained by performing
82	the synthetic tests is used in the analysis and interpretation of the solution of the inversion
83	performed on real explosion data from Arenal. The methodology used in the calculation
84	of the Green's functions, and in the inversion method, is provided herein. Results of our
85	synthetic tests, the inversion of the real event and the interpretation of the mechanism that
86	generates this event are also presented.
87	
88	2. Arenal volcano
89	
90	Arenal is a small strato-volcano located in north-western Costa Rica and is mainly

91 composed of tephra and lava flows (Soto and Alvarado, 2006); its location and

92	topography digital elevation model are shown in Figure 1. It was dormant for several
93	<u>centuries</u> until July 1968 when a P <u>eléan</u> eruption resulted in 78 fatalities and opened three
94	new craters in the western flank. Arenal's explosive activity is still ongoing today and is
95	preceded, and accompanied, by different types of seismic events. The most common
96	types are LP events, explosions, spasmodic and harmonic tremor, rockfalls and sporadic
97	volcano tectonic swarms (Alvarado and Barqueroet al., 1997). Explosions and LP events
98	have the same frequency range (1-3 Hz), but differ in amplitude. Explosions have larger
99	amplitudes and are accompanied by a large, audible air-shock. The explosion coda often
100	evolves into tremor (Hagerty et al., 2000). Tremor is the most common type of event at
101	Arenal with a duration that can last for several hours and comprises spasmodic and
102	harmonic. Harmonic tremor can be distinguished from spasmodic tremor by their
103	regularly spaced frequency peaks with most of the energy concentrated between 0.9 and 2
104	Hz. Spasmodic tremor energy spans 1-6 Hz. There is no clear difference in the genesis of
105	spasmodic and harmonic tremor; the former can progressively evolve into the latter and
106	vice-versa (Lesage et al., 2006). Most of the tremor exhibits a progressive gliding in
107	frequency that can last tens to hundreds of seconds. The gliding phenomenon can be
108	generated by pressure changes in the fluid inside the conduit (Hagerty et al., 2000). The
109	number of seismic events can be variable during the day. However, in recent decades a
110	decrease in the number and amplitude of explosions has been recognised (Lesage et al.,
111	2006). Arenal's seismicity is often accompanied by gas emissions produced during the
112	explosions and by passive degassing in rhythmic pulses along the edge of the crater
113	(William–Jones et al., 2001). The origin of these seismic events is, at present, not fully
114	understood.
116 3. Methodology

117

The elastic Green's functions are defined as the Earth's response to an impulsive source generated at a certain point (source location) and propagating to a receiver location in an elastic Earth. The nth-component of the displacement, recorded at position $\mathbf{x} \cdot \mathbf{x}$ and time *t*, can be written as (Aki and Richards, 2002):

122

123 $u_n(\mathbf{x}, t) = M_{pq}(t) * G_{np,q}(\mathbf{x}, t) + F_p(t) * G_{np}(\mathbf{x}, t), \quad n, p, q = 1, 2, 3 \quad (1)$

Field Code Changed

where M_{pq} is the force couple or dipole in the pq direction acting at the source, F_p is the 125 single force acting in the p direction, and $G_{np,q}$ and $G_{np,q}$ represent the n^{th} components of 126 127 the corresponding medium responses (Green's functions) and their derivatives, 128 respectively. The asterisk indicates convolution and the summation convention applies. 129 Volcanoes are the most "promising" environments in which single forces are likely to be 130 found (Takei and Kumazawa, 1994), even if the existence of these single forces in the LP 131 process is, at present, not reliably constrained by experiments or observations. For VLP 132 events, Chouet (2003) attributes single forces to gravitational energy in the source 133 volume due to the ascent of a slug of gas in the volcanic conduit or by a volcanic jet 134 during an explosion. The latter phenomenon was also successfully modelled using single 135 forces in the recent work of Jolly et al. (2010). The reliability of the inversion results are 136 strongly dependent on the accuracy with which the Green's functions are calculated 137 (Lokmer, 2008). In the past, due to computational restrictions, Green's functions were

138	calculated only for a homogeneous half-space excluding topography. This approach leads
139	to misinterpretations because the seismic wavefield is sensitive to layered velocity
140	models and strongly affected by topographical scattering (Bean et al., 2008). However, in
141	the past decade, topography has been included in the calculation of Green's functions
142	(Ohimanto and Chouet, 2007; Neuber and Pointer, 2000; Jousset et al., 2004; Jolly et al.
143	2010). To avoid incorrect interpretations we require detailed information about the
144	medium i.e. a precise velocity model or near-accurate Green's functions relative to the
145	frequencies of interest. At present, detailed velocity models with structural information,
146	particularly related to the layers close to the surface, are extremely rare on volcanoes due
147	to the considerable cost and effort involved in producing such high resolution velocity
148	models. Therefore, synthetic tests provide a powerful tool for constraining the inversion
149	results and improving the reliability of such interpretations.
150	
151	To calculate the Green's functions we use 3D-full wavefield numerical simulations
152	including topography and the "best" estimate of the velocity structure retrieved from
153	sounding using the spatial autocorrelation (SPAC) method, Métaxian et al., 1997, -and
154	seismic refraction experiments carried out on Arenal in 1997 (Mora et al., 2006). In this
155	study, we use the 3D Elastic Lattice Method (ELM), to simulate wave propagation in the
156	elastic medium (O'Brien and Bean, 2004). To calculate the Green's functions we use a 1-
157	D velocity model, see (Figure 2). This velocity model comprises two major layers
158	following the profile of the topography above a half space medium with velocities of 3.5
159	km/s for the P-waves (V_p) and 2.0 km/s for the S-waves (V_s) and a maximum density
160	equal to 2500 kg/m ³ . The numerical domain consists of a 13 x 11 x 6 km ³ space where

161	topography is derived from the Digital Elevation Model (DEM) of the volcano using a
162	spatial grid step of 15 m. Long wavelengths are simulated using a model of large extent
163	of the model and with relatively small grid-step. Absorbing boundaries, 900 m thick, are
164	included in the model to avoid edge reflections and ensure the absorption of the longest
165	wavelengths. The top boundary of the model is a free surface including topography. To
166	calculate the Green's functions library for a large number of source locations within a
167	predefined source region, we adopt the Reciprocity Theorem (e.g. Aki and Richards,
168	2002). Green's functions are calculated over a volume (480 x 300 x 840 m^3) of 4735
169	points located under the crater summit. In addition to calculating the Green's functions
170	for each single point source, we also required their spatial derivatives around the source
171	position. Spatial derivatives can be extracted directly from the output of the simulation
172	and are given by the central finite-difference derivative

174
$$G_{np,q}(\mathbf{r}, \mathbf{s}) \approx \frac{G_{np}(\mathbf{r}, \mathbf{s} + \Delta q) - G_{np}(\mathbf{r}, \mathbf{s} - \Delta q)}{2\Delta q}$$
 (2)

175

where $G_{np,q}(\mathbf{r},\mathbf{s})$ is the spatial derivative of the Green's functions G_{np} around the source position, \mathbf{s} is the source position, \mathbf{r} is the receiver position and Δq is the spatial grid spacing. The Green's functions were calculated <u>using a Gaussian source time function</u> <u>with for-a</u> frequency range of up to 5 Hz and a duration of 15 s. The recording positions for the synthetic data map to the real locations of nine stations deployed on the volcano during a seismic experiment carried out in February 2005, as shown in Figure <u>31</u>. Since Arenal is quite a dangerous environment (due to the frequent pyroclastic flows and the

183	ballistic bombardment of blocks and bombs), the stations were deployed on the flanks of
184	the volcano but, unfortunately, could not be placed close to the summit.
185	
186	In the frequency domain-without the single forces term, equation (1) can be written as:
187	
188	$u_n(\mathbf{X}, \omega) = M_{pq}(\omega)G_{np,q}(\mathbf{X}, \omega) + G_{np}(\mathbf{X}, \omega)F_p(\omega) $ (3)
189	
190	where $u_n(\omega)$, $M_{pq}(\omega)$, $F_p(\omega)$, $G_{np}(\omega)$, $G_{np,q}(\omega)$, are the spectra of the displacements, of
191	the moment tensor components, of the single forces and -and of the components and of
192	the spatial derivatives of the Green's functions, respectively. The equation is solved
193	separately for each frequency. The results are then transformed into the time domain
194	using an inverse Fourier Transform. Equation (3) can be written in matrix form as:
195	
196	$\mathbf{u} = \mathbf{G}\mathbf{m} \tag{4}$
197	
198	where \mathbf{u} is the data matrix, \mathbf{G} is matrix containing the Green's functions and derivatives,
199	m is the moment tensor <u>and single forces</u> components' matrix. If N is the number of
200	seismograms used in the inversion, equation 4 can be also written in an explicit form as;

$$202 \qquad \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ \vdots \\ u_{N} \end{bmatrix} = \begin{bmatrix} g_{11,1} & g_{12,2} & g_{13,3} & g_{11,2} & g_{11,3} & g_{12,3} & g_{11} & g_{12} & g_{13} \\ g_{21,1} & g_{22,2} & g_{23,3} & g_{21,2} & g_{21,3} & g_{22,3} & g_{21} & g_{22} & g_{23} \\ g_{31,1} & g_{32,2} & g_{33,3} & g_{31,2} & g_{31,3} & g_{32,3} & g_{31} & g_{32} & g_{33} \\ \vdots & \vdots \\ g_{N1,1} & g_{N2,2} & g_{N3,3} & g_{N1,2} & g_{N1,3} & g_{N2,3} & g_{N1} & g_{N2} & g_{N3} \\ \end{bmatrix} \begin{bmatrix} M_{11} \\ M_{22} \\ M_{33} \\ M_{12} \\ M_{13} \\ M_{23} \\ F_{1} \\ F_{2} \\ F_{3} \end{bmatrix}$$
(5)

204 with the assumption (due to the symmetry of the moment tensor) that

205

206
$$g_{np,q} = \begin{cases} G_{np,q} & p = q \\ G_{np,q} + G_{nq,p} & p \neq q \end{cases}$$
 $n = 1, 2, 3, ... N$ (6)

207

The quality of our inversion procedure is tested through the evaluation of the misfit (R)between calculated and observed data. R can be expressed by the following equation:

210

211
$$R = \frac{(\mathbf{u} - \mathbf{Gm})^T \mathbf{W} (\mathbf{u} - \mathbf{Gm})}{\mathbf{u}^T \mathbf{W} \mathbf{u}}$$
(7)

212

213 where \mathbf{W} is a diagonal weighting matrix of the quality of the waveforms. It can be

214 expressed in explicit matrix format as

216
$$W = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_N \end{bmatrix}$$

(8)

218	The lowest value of the misfit R indicates the best solution for \boldsymbol{m} . As equation 4 is a
219	linear equation, its least squares solution can be expressed as (Menke, 1984):
220	
221	$\mathbf{m}^{\text{est}} = \left(\mathbf{G}^{T}\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{G}^{T}\mathbf{W}\mathbf{u} $ (9)
222	
223	where the superscript "T" denotes the transpose matrix and \mathbf{m}^{est} is the estimated moment-
224	tensor matrix. Since data recorded at different stations can show different noise
225	signatures, the weight matrix plays an important role in the inversion procedure A small
226	amount of noise in the data can results in large errors in the derivation of source
227	mechanisms, even leading to erroneous solutions. A good example of how noise can
228	influence the retrieval of the correct solution is given by Aster et al. (2005, pp. 73-79).
229	
230	
231	4. Description and results of Synthetic Tests
232	
233	The inversion technique is normally very sensitive to a range of effects present in
234	volcanic environments such as those associated with topography, near surface structures
235	and heterogeneities. To test the consistency and limitations of our inversion procedure we
236	performed a series of synthetic tests. In these tests we attempt to (i) investigate our ability

237	to retrieve the correct source time function and mechanism for a fixed source location
238	when random noise is added to our synthetic data, and (ii) analyze how a mislocated
239	source position can influence the inversion solution while highlighting the role played by
240	the single forces.
241	
242	The use of synthetic tests is of crucial importance for ato contribute to the full
243	understanding of the inversion technique and to retrieve the correct mechanism acting on
244	the volcano. Using 3D numerical simulations we generate synthetic signals with a Ricker
245	wavelet source time function with a central frequency of 2 Hz, shown in Figure 43 . The
246	source is positioned under the crater summit where the real source is most likely to be
247	located (Benoit and McNutt, 1997; Hagerty et al., 2000; Mora et al., 2001; Lesage et al.,
248	2006). Source locations are not fully constrained at depth but the epicenters are probably
249	located in a small area centered under the active crater (Métaxian et al., 2002). We fix our
250	source point at a depth of 200 meters beneath the crater summit. The mechanism
251	simulated is an explosion ($M = 10^{12}$ Nm). No single forces are included. The inversion
252	was performed for both a moment tensor plus single forces (MT+SF), and moment tensor
253	only (MT).
254	
255	It is important to note that in the following tests the moment tensor parts of the source

It is important to note that in the following tests the moment tensor parts of the source solution are expressed in 10^{12} Nm, while the force parts are expressed in 10^{9} N. This is due to the fact that a force of 10^{9} N will produce the samea displacement with the same amplitude of a moment of 10^{12} Nm if their radiation patterns are ignored (radiation patternthis can be done-ignored due tobecause of the good azimuthal coverage of the

260	deployment). We validate (not shown here) that this holds for our station configuration,
261	i.e. that the radiation patterns of the obtained moments and forces do not introduce
262	significant deviation from the relationship-general rule outlined above. Consequently, if
263	we plot moment and forces using the same scale, forces will not be visible in the
264	diagrams even if they considerably contributes considerably to the total amplitude of the
265	signals.
266	
267	The first test aims to show the ability of our inversion code to retrieve the exact
268	mechanism and source time function. Since we used the exact Green's functions
269	calculated for the exact source position, the correct solution is expected to be retrieved.
270	Figure $5-4$ shows the results of the test for the moment tensor components plus single
271	forces (MT+SF) in the left panel and moment tensor only (MT) in the right panel using
272	the field location of the nine stations. Solutions are characterized by a small value of the
273	misfit (approximately equal to zero). Since the source time function and the mechanism
274	are perfectly recovered by the inversion, and the value of R is small, we can affirm that
275	the correct solution is retrieved by our inversion code for both solutions (MT and
276	MT+SF). Table 1 lists the values of the misfits of the inversions performed using
277	synthetic and real data.
278	
279	Since data recorded on volcanoes can often have a low signal-to-noise ratio, we attempt
280	to simulate a real situation by adding noise to our synthetic data. In the frequency range

281 of interest, we contaminate our synthetic dataset with random noise derived from the

282 noise level of the real data recorded on Arenal. These data show a low level of

283	contamination of noise equally distributed at all the stations. The amplitude of the noise is
284	within 10% of the average rms amplitude (signal-to-noise ratio, $SNR = 10$). The
285	inversion is performed for the moment tensor components and the moment tensor
286	components plus single forces. Results of the test are illustrated in Figure 65. Spurious
287	single forces appear in the MT+SF inversion solution. Since the amplitude of the noise is
288	small, the solution is not dominated by the spurious forces and the source time function
289	and explosive mechanism are correctly recovered by both inversions (see $\underline{M}_{xx}, \underline{M}_{yyx}$
290	M_{ZZ} diagonal_components for MT and MT+SF solution). In order to test how larger noise
291	amplitudes influence the solution we increased the noise level to 50% of the average rms
292	amplitude, which could be the case if strong tremor was recorded simultaneously with LP
293	events. The amplitude of the spurious forces increases with the increase in noise level. As
294	shown in Figure $7-6$ (right panel) the MT solution remains stable and correct, while in the
295	case of MT+SF the spurious single forces strongly influences contaminates the solution.
296	The source time function and mechanism recovered along the diagonal components of the
297	moment tensor solution (MT+SF) are no longer correctly retrieved and the solutions do
298	not look stable. This leads to the conclusion that noise introduces a larger error into the
299	inversion with more free parameters.
300	

301 Since spurious single forces can be generated when noisy data are used in the inversion,
302 we want to investigate how the presence of real <u>single</u> forces can influence the solution.
303 In order to understand the role played by single forces in the inversion procedure <u>for both</u>
304 <u>MT and MT+SF solution</u>, we perform synthetic tests in which different geometries are
305 simulated (e.g. pure volumetric source and a vertical crack with the normal parallel to the

306	x direction) along with including a strong single force in the $\frac{\text{Westwest-East east}}{\text{East east}}(x)$
307	direction. Again twelve stations have been used along with a signal to noise ratio of 10.
308	Results for the pure volumetric source (M = 10^{12} Nm) and single force (F = 10^{9} N) are
309	shown in Figure <u>87</u> . Solutions for the moment tensor components (Figure <u>87</u> , right panel)
310	are correctly retrieved by the inversion procedure even though a real single force is
311	included in the actual input source. In the solution for the MT+SF (Figure <u>87</u> , left panel),
312	spurious single forces are generated in the vertical and Northnorth-South south directions,
313	in addition to larger amplitudes along the z direction. The amplitude of the Westwest-
314	East east force is successfully retrieved, while the source-time function exhibits "ringing"
315	in the tail of the retrieved signal. Results for a vertical crack with single Westwest-East
316	<u>east</u> horizontal force are shown in Figure $\frac{98}{2}$. The MT inversion solution (Figure $\frac{98}{2}$, right
317	panel) is well resolved, but spurious single forces are again generated for the MT+SF
318	solution, left panel of Figure 98 . For the vertical crack the spurious force along the z
319	direction has a slightly larger amplitude than the one generated for a pure volumetric
320	source. For both geometries along the off-diagonal components, a small non-volumetric
321	component is generated. The generation of this component can be considered as an
322	artifact of the inversion procedure and it does not significantly affect the solution.
323	
324	The same test has been performed using an input single force along the vertical direction.
325	The MT solutions are correct for pure volumetric sources and vertical crack geometries.
326	In the solution for MT+SF, the moment tensor part and the vertical force are again
327	correctly retrieved while spurious single forces are present in the Northnorth-South-south
328	and Westwest-East directions. Since the same solutions have been obtained using a

329 Westwest-East east and a vertical input force, only solutions for the horizontal force is
330 presented.

332	Finally a test is performed to analyze how the solution of the moment tensor inversion <u>for</u>
333	MT and MT+SF is influenced when an incorrect source position is used. The signal to
334	noise ratio is again 10. With this test we aim to resemble a realistic, and quite common,
335	situation in which the correct position of the seismic source is unknown and difficult to
336	determine. The mislocated source is <u>fixed in a positioned 240 m in the x-direction</u> , 345 m
337	in the y-direction and 500 m in the z-direction away from the correct source (located
338	under the crater summit at a depth of 200 m). In the test, an explosive source mechanism
339	has been simulated with no single forces included in the inversion. The solution is shown
340	in Figure <u>109</u> . For the MT solution the explosive mechanism and the Ricker-like wavelet
341	source time function are well retrieved by the inversion. In the MT+SF solution spurious
342	single forces are generated, particularly in the z-direction. The amplitudes of the spurious
343	single forces originating from a mislocated source position are comparable to the
344	amplitudes of the forces generated when noise is added to our synthetic data (see Figure $\frac{6}{2}$
345	5 and 109). This leads to the conclusion that in the presence of a noise with amplitude
346	within 10% of the average rms, the solution is insensitive to the precise-inaccurate
347	location of the source.
348	

- **5. Discussion of synthetic tests**

351	We performed the synthetic tests in order to constrain the inversion of the real data from
352	Arenal volcano. In particular, we wanted to investigate how different signal to noise
353	ratios, and wrong errors in the source locations of the source, influence the inversion
354	solutions. We also tested the inversion code using synthetic data generated with 3D
355	numerical simulations. We have shown that results for noisy data give stable MT
356	solutions in which the source time function and mechanism are correctly retrieved. In the
357	case where forces are allowed in the solutions (MT+SF), spurious single forces are
358	generated with the largest amplitudes in the z-direction. When the signal to noise ratio
359	decreases, the amplitude of the spurious single forces increases, strongly influencing the
360	solution. When the signal to noise ratio is decreased to 2, the source time function and
361	mechanism are no longer retrieved in the MT+SF solution. In addition, the spurious
362	single forces entirely dominate the solution. Finally, we tested the sensitivity of the
363	inversion to source mislocation. In this case the correct source time function and
364	mechanism are correctly retrieved for the MT solution, while solutions for the MT+SF
365	give rise to spurious single forces. Since both the source mislocation and noisy
366	environment produced spurious single forces in MT+SF solution, we investigated the
367	possibility of neglecting the forces in our inversions, i.e. inverting for the MT solution
368	only, even if actual single forces are present in the source. We used two mechanisms, a
369	pure volumetric source and a vertical crack, both with a strong horizontal single force
370	(Westwest-East-east_direction). In both cases the solutions for the MT were correct. In the
371	MT+SF solutions, the moment tensor part and the true single force are correct, while
372	spurious single forces are generated on the other single force components. The same
373	results are obtained using a strong vertical input force.

3	7	4
0	1	-

375	From the obtained results we can affirm that spurious single forces are easily generated
376	under conditions common on volcanoes, such as noisy data and mislocated source
377	positions. Hence, particular care should be taken when interpreting the forces obtained
378	from the inversion of real data. On the contrary, for the station configuration in this study,
379	the MT solutions are always correct in the tests made, even if the actual single forces are
380	neglected in the inversion. This leads us to the conclusion that, in the presence of a well
381	constrained velocity model, MT solutions can be trusted even when noisy data are used in
382	the inversion and that real forces, if present, will not affect this solution. It is important to
383	note that the latter result is valid for Arenal volcano with this station distribution but
384	cannot be generalized for all volcanoes. Separate tests for each specific site and station
385	distribution should be performed. Performing these synthetic tests using the station
386	distribution from the 2005 seismic installation provides us with better understanding of
387	how different uncertainties in our data map onto the moment tensor solution. This will
388	allow us to reliably interpret the results from the inversion of the real data catalogue. An
389	example of an inversion of a single explosive event recorded in February 2005 is
390	presented in the following section.
391	
392	6. Application to real data
393	

During a seismic experiment, carried out from the 10th to the 21st of February 2005, nine
Güralp CMG40T seismometers, with mini-Titan recorders were deployed on Arenal

396 volcano. This temporary network recorded several events per day. From this database a

397	signal accompanying an explosion, occurring on the 14 th of February at 21.40, was
398	selected for moment tensor inversion (Figure <u>4410</u>).
399	
400	Métaxian et al. (2002) and Lesage et al. (2006) reported on signals recorded during
401	previous experiments carried out on Arenal in 1997. These signals, coming from the same
402	source region, have durations of only 7 s (e. g. path effects are not longer than 7 s), which
403	suggests that our 100 s long signals do not only represent path effects, but rather a
404	complicated source process or an amalgamation of several processes. This is apparent
405	from the spectrogram in Figure $\frac{1110}{10}$, where the onset of the signal has a broad spectrum
406	followed by the separated spectral lines. These lines could be interpreted as a harmonic
407	tremor triggered by an initial disturbance (Lesage et al., 2006). Although we consider our
408	velocity model as a reasonable approximation of the real structure, even small
409	uncertainties can prevent us from correctly inverting for such a long signal. This is
410	because uncertainties in the velocity model will primarily change the coda of the signal,
411	so in the case of a long source process this error accumulates with the time. For these
412	reasons, we will invert for the "trigger" part of the signal only. In order to analyze how,
413	and if, the time-windowing of the signal influences our inversion we perform an
414	additional synthetic test. In this test we simulate an explosive mechanism (no single
415	forces are included) using synthetic signals generated by a 40 second long source time
416	function. The inversion is performed for the moment tensor components and moment

tensor component plus single forces for a source located 200 m under the crater summit.

The duration of both Green's functions and signals are reduced in the inversion code to

15 seconds and tapered. Figure 12-11 shows the solutions for the MT+SF (left panel) and

417

418

420	the MT (right panel). In the solution for moment tensor components plus single forces,
421	spurious single forces are generated along the horizontal and vertical directions. The
422	moment tensor components for both solutions (with and without single forces allowed in
423	the inversion) are analyzed with the principal components analysis (Vasco, 1989). This
424	analysis is based on the singular value decomposition of the moment tensor components.
425	Both solutions are found to consist of 94% isotropic components. The amplitude of the
426	source time function is well retrieved by the inversion. This leads us to the conclusion
427	that the retrieval of the correct source mechanism is not influenced by reducing the length
428	of the signal and by using only the initial trace of the event.

430 To perform the inversion on the recorded event, after the deconvolution for instrument 431 responses, the data is converted from velocity to displacement measurements. The energy 432 peak is between 0.8 - 2 Hz, thus the signals are filtered within this band. The quality of 433 the inversion is again evaluated through the analysis of the misfit R. Solutions for 434 moment tensor components plus single forces, and moment tensor components only, are 435 analyzed. Nine stations have been utilized in the inversion. The location of the source is 436 constrained through the inversion procedure performing a grid search within the volume 437 of possible source points. The dimensions and location of the source volume were 438 restricted to possible locations identified in previous work carried out on Arenal (Hagerty 439 et al., 2000; Métaxian et al., 2002), according to which the source is likely to be located 440 in a small area with a radius of 0.3 km around the crater summit and at a depth of no 441 more than 600 meters. The values of the misfit are evaluated for accuracy of the solution; 442 the best is defined by the lowest misfit. Only misfits lower than 0.5 have been considered.

443	The low misfits are mostly concentrated in the Northnorth-West west corner of our
444	volume. Small variations of the source position inside this volume do not alter the
445	inversion results. This was also seen with the source mislocation synthetic tests.
446	Calculated and observed data are compared in $\frac{13 \cdot 12}{12}$ while the results of the
447	inversion are shown in Figure 1413. Single forces, generated in Easteast-Westwest,
448	Northnorth-Southsouth, and vertical direction appear in the solution. F_z has a larger
449	amplitude than F_x and F_y . Our synthetic tests demonstrated that spurious single forces are
450	easily generated with this station configuration. Therefore, given the synthetic results, we
451	cannot be sure if they are real or spurious. Furthermore, we have shown that the solution
452	for moment tensor components is relatively stable. For these reasons we have
453	concentrated on the solution for MT only, analyzing it using the principal components
454	analysis. The results give a strong isotropic component (87%) with a small percentage of
455	compensate linear vector dipoles (CLVD) (9%) and double couple components (4%).
456	Since our previous test showed spurious off-diagonal components, we may not rely on
457	the deviatoric part of the solution. These results lead us to the conclusion that the
458	mechanism generating this event is, as expected, an explosion. Assuming that the shear
459	modulus (µ) is 10 GPa, the estimated volume change ($\Delta V)$ associated with this explosive
460	event is 68 m^3 (ΔV = μM_o where M_o is the scalar seismic moment). The source position
461	was located at roughly 200 meters beneath the crater summit. Following the approach of
462	Jolly et al. (2010), we performed the inversion for different source depths; Tthe isotropic
463	component percentage remains stable inside the source location volume with a maximum
464	value of 85%, but the relative percentage of CLVD and double couple changes.

465 Therefore, given the results from the synthetic tests, and considering that an inversion of

466 the explosive event produces an isotropic solution, we are confident that the MT 467 inversion can be applied to the LP-data recorded during this deployment. 468 469 7. Conclusions 470 471 In this paper we present synthetic tests performed to examine how the errors involved in 472 the moment tensor inversion influence the correct retrieval of the source time function 473 and mechanism in the volcanic setting of Arenal volcano. In particular we focus our 474 attention on how the signal-to-noise-ratio, and a mislocated source position, influence the 475 results of the inversion performed for moment tensor components and moment tensor 476 components plus single forces. We show that spurious single forces are easily generated 477 when noisy data and mislocated source positions are included in the inversion. On the 478 contraryHowever, we find that the inversion for MT only gives the correct MT 479 components of the solution even when the actual single forces are present in the source. 480 This suggests that for this volcano, and this station configuration, we should be careful in 481 attaching physical meaning to single forces. This information is used in the interpretation 482 of the results of an inversion for an explosive event recorded on Arenal in 2005. 483 Analyzing the solution with the principal components analysis of Vasco (1989), we are 484 able to recover a predominantly explosive mechanism for the analyzed event. Performing 485 the inversion for different source depth shows the stability of the isotropic component present in the solution. This allows us to confidentially confidently invert for the other, 486 487 different classes of data recorded on Arenal in 2005 in order to retrieve and compare the 488 source mechanisms generating a range of observed events.

Acknowledgements

491		
492	This work has been funded by Science Foundation Ireland (SFI). The authors wish to	
493	acknowledge the Irish Centre for High-End Computing (ICHEC) for providing	
494	computational facilities. We would also like to thank Dr Louis De Barros and Dr Shane	
495	Tyrrell for useful comments on the manuscript. The fieldwork was partly supported by	
496	the European Commission, 6 th Framework Project – 'VOLUME', Contract No. 018471,	
497	INSU-CNRS (ACI Risques naturels et changements climatiques), Université de Savoie	
498	(BQR B2005-09), and projects n° 113-A6-503 and 113-A7-511 from Universidad de	
499	Costa Rica and Instituto Costarricense de Electricidad. We thank the staff of Escuela	
500	Centroamericana de Geología, Universidad de Costa Rica, and Instituto Costarricense de	
501	Electricidad for their efficient logistical support. We would also like to thank P. Jousset	
502	and an anonymous reviewer for detailed reviews which greatly improved the manuscript.	
503		
504	References	
505		
506	Aki, K. & Richards, P. G, 2002. Quantitative Seismology, 2nd ed., University	
507	Science Books, Sausalito, California, 700 pp.	
508		
509	Aster, R. C., Borchers, B., Thurber, C. H., 2005. Parameter Estimation and Inverse	
510	Problems. Elsevier Academic Press, 300 pp.	
511		

512	Alvarado, G., Barquero, R., 1997. Las señales sísmicas del volcán Arenal (Costa Rica) y	
513	su relación con las fases eruptivas (1968–1986). Cienc <u>ia e</u> - Tecnol- <u>ogia,</u> 11 (1), 15–35.	
514		
515	Bean, C., Lokmer, I., O'Brien, G., 2008. The influence of near-surface on long-period	
516	(LP) seismic signals and on moment tensor inversions: Simulated examples from Mt.	
517	Etna. Journal of Geophysical Research, 113, B08308, doi:10.1029/2007JB005468.	
518		
519	Benioit, J.P. and McNutt, S.R., 1997. New constraints on source processes of volcanic	
520	tremor at Arenal Volcano, Costa Rica, using broad-band seismic data. Geophysical	
521	Research Letters, 24, 449-452.	
522		
523	Chouet, B. A., 1996. Long-period volcano seismicity: its source and use in eruption	
524	forecasting. Nature, 380-, 309-316.	
525		
526	Chouet, B. A., 2003. Volcano Seismology. Pure and Applied Geophysics, 160 (3), 739-	
527	788.	
528		
529	Hagerty, M.T., Schwartz, S.Y., Garcés, M.A., Protti, M., 2000. Analysis of seismic and	
530	acoustic observations at Arenal volcano, Costa Rica, 1995–1997. Journal of Volcanology	
531	and Geothermal research Research, 101, 27-65.	
532		
533	Jolly, A., Sherburn, S., Jousset, P., and Kilgour, G., 2010. Eruption source processes	
534	derived from seismic and acoustic observations of the 25 September 2007 Ruapehu	

535	eruption North Island, New Zealand. Journal of Volcanology and Geothermal Research,
536	<u>191, 33–45.</u>
537	
538	Jousset, P., Neuberg, J., and Jolly, A., 2004. Modelling low-frequency earthquakes in
539	a viscoelastic medium with topography. Geophysical Journal International, 159, 776-802.
540	
541	Lesage, P., Mora, M.M, Alvarado, G., Pacheco, J., Métaxian, J. P., 2006. Complex
542	behavior and source model of the tremor at Arenal volcano, Costa Rica. Journal of
543	Volcanology and Geothermal Research, 157, 49–59.
544	
545	
546	Lokmer, I., Bean, C.J., Saccorotti, G., Patanè, D., 2007. Moment tensor inversion of LP
547	events recorded on Etna in 2004 using constraints obtained from wave simulation tests.
548	Geophysical Research Letters, 34, L.22316, doi:10.1029/2007GL031902.
549	
550	Lokmer, I., 2008. Long period seismic activity and moment tensor inversion in volcanic
551	environments: Application to Mount Etna. Unpublished Ph.D. Thesis, University College
552	Dublin, Ireland.
553	
554	Lokmer, I., Saccorotti, G., Di Lieto, B., Bean, C. J., 2008. Temporal evolution of long-
555	period seismicity at Etna Volcano, Italy, and its relationships with the 2004-2005
556	eruption. Earth <u>and</u> Planet <u>-ary</u> Sci- <u>ence</u> Lett ., ers, 266, 205-220.
557	

558	McNutt, S. R. (2005). Volcanic Seismology. Annual- Review- of Earth and Planetary-
559	Sci- <u>ences</u> , 33 (1), 461-491, doi:10.1146/annurev.earth.33.092203.122459.
560	
561	Menke, W., 1984. Geophysical data analysis: Discrete inverse theory. First edition,
562	Academic Press Inc., Orlando, Florida, 260 pp.
563	
564	Métaxian, J.P., Lesage, P., Dorel, J., 1997. Permanent tremor of Masaya volcano,
565	Nicaragua: wavefield analysis and source location. Journal of Geophysical Research, 102,
566	<u>22529–22545.</u>
567	
568	Métaxian, J.P., Lesage, P., Valette, B., 2002. Locating sources of volcanic tremor and
569	emergent events by seismic triangulation: Application to Arenal volcano, Costa Rica.
570	Journal of Geophysical Research, 107, B10, 2243, doi:10.1029/2001JB000559.
571	
572	Métaxian, J.P., O'Brien, G.S., Bean, C.J., Valette, B., Mora, M., 2009. Locating volcano-
573	seismic signals in the presence of rough topography: wave simulations on Arenal
574	volcano, Costa Rica. Geophysical Journal International, 179, 3, doi: 10.1111/j.1365-
575	<u>246X.2009.04364.x</u>
576	
577	Mora, M.M, Lesage, P., Dorel, J., Bard, P., Metaxian, J.P., Alvarado G. E., Leandro C.,
578	2001. Study of seismic effects using H/V spectral ratios at Arenal Volcano, Costa Rica.
579	Geophysical Research Letters, 28, n.15, 2991-2994.

581	Mora, M.M., Lesage, P., Valette, B., Alvarado, G.E., Leandro, C., Metaxian, J. P., Dorel,	
582	J., 2006. Shallow velocity structure and seismic site effects at Arenal volcano, Costa	
583	Rica. Journal of Volcanology and Geothermal Research, 152, 121-139.	
584		
585	Neuberg, J. and Pointer, T., 2000. Effects of volcano-topography on seismic broadband	
586	waveforms. Geophysical Journal International, 143, 239–248.	
587		
588	Neuberg, J., Luckett, R., Baptie, B., and Olsen, K., 2000. Models of tremor and low-	
589	frequency earthquake swarms on Montserrat. Journal of Volcanology and Geothermal	
590	Research, 101, 83–104.	
591		
592	O'Brien, G. S., Bean, C. J., 2004. A 3D discrete numerical elastic lattice method for	
593	seismic wave propagation in heterogeneous media with topography. Geophysical	
594	Research Letters, 31, L14608, doi:10.1029/2004GL020069.	
595		
596	Ohminato, T. and Chouet, B., 1997. A free-surface boundary condition for inclusing	
597	3D topography in the finite-difference method. Bulletin of the Seismological Society of	Formatted: Don't adjust space between Asian
598	<u>America, 87(2), 494–515</u>	
599		
600	Ohminato, T., Chouet, B. A., Dawson, P., Kedar, S., 1998, Waveform inversion of very	
601	long period impulsive signals associated with magmatic injection beneath Kilauea	
602	Volcano, Hawaii. Journal of Geophysical- Research, 103 (B10), 23839-23862	
603	1	

604	Soto, G.J., Alvarado, G.E., 2006. Eruptive history of Arenal Volcano, Costa Rica, 7 ka to		
605	present. Journal of Volcanology and Geothermal Research, 157, 254-269.		
606			
607	Takei, Y. & Kumazawa, M., (1994). Why have the single force and torque been		
608	excluded from seismic source models?- Geophysical Journal International, 118 (1), 20-		
609	30.		
610			
611	Vasco, D. W., (1989). Deriving source-time functions using principal component		
612	analysis, Bulletin of the Seismological Society of America, 79 (3), 711-730.		
613			
614	Williams-Jones, G., Stix, J., Heiligmann, M., Barquero, J., Fernandez, E., Gonzalez,		
615	E.D., 2001. A model of degassing and seismicity at Arenal volcano, Costa Rica. Journal		
616	of Volcanology and Geothermal Research, 108, 121-139.		
617			
618	Figures captions		
619			
620	Figure 1. Arenal location map and topography. Digital elevation model and station		
621	configuration used in our synthetic tests. Arenal location is showedn in the right-hand		
622	panel. The triangles represent the locations of the stations deployed on Arenal during a		
623	seismic experiment carried out in 2005.		
624			
625	Figure 2. 1D velocity model used for Arenal. The blue and red lines indicate the P-wave		

 (V_p) and S-wave (V_s) velocities versus depth, respectively.

627	
628	Figure 3. used in our synthetic tests. The stars represent the locations of the stations
629	deployed on Arenal during a seismic experiment carried out in 2005.
630	
631	Figure 4 <u>3</u> . Ricker wavelet source time function (amplitude expressed in 10^{-12} Nm) used to
632	generate synthetic signals (top panel) and its spectrum (bottom panel).
633	
634	Figure <u>54</u> . Moment tensor component plus single forces solution (left panel) and moment
635	tensor components solution (right panel) for synthetic data generated with an explosive
636	mechanism and the Ricker wavelet source time function shown in Figure 4.
637	
638	Figure 65. Moment tensor component plus single forces solution (left panel) and moment
639	tensor components solution (right panel) obtained when random noise is added to the
640	synthetic data (noise amplitude is equal to 1/10 th of the signal amplitude). Spurious single
641	forces are generated in the solution for moment tensor components plus single forces.
642	The correct solution should be: $F_x = 0$; $F_y = 0$; $F_z = 0$; $M_{xx} = 1$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$;
643	$M_{xz} = 0; M_{yz} = 0.$
644	
645	Figure $\frac{76}{2}$. Same as Figure $\frac{65}{2}$, with noise amplitude equal to $1/2$ of the signal amplitude.
646	Spurious single forces are generated in the solution for moment tensor components plus
647	single forces, strongly affecting the MT+SF solution.
648	

Figure 87. As Figure 6.5 (noise amplitude equal to $1/10^{\text{th}}$ of the signal amplitude). In this case, a pure volumetric source geometry with a single force was simulated. The real force is correctly retrieved while spurious single forces are generated in the other direction. The correct solution should be: $F_x = 2$; $F_y = 0$; $F_z = 0$; $M_{xx} = 1$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; $M_{xz} =$ 0; $M_{yz} = 0$.

654

655 Figure 98. As Figure 6-5 (noise amplitude equal to $1/10^{th}$ of the signal amplitude) for a 656 crack plus single force source. The real force is correctly retrieved while spurious single 657 forces are generated in the other directions. The correct solution should be: $F_x = 2$; $F_y = 0$; 658 $F_z = 0$; $M_{xx} = 2$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; $M_{xz} = 0$; $M_{yz} = 0$ (moment tensor inversion for 659 vertical crack with $\lambda = 2\mu$ where λ and μ are the Lamé parameters).

660

661Figure 102. Same as Figure 6.5 (noise amplitude equal to $1/10^{th}$ of the signal amplitude)662for an incorrect source position. The mislocated source position does not affect the663solution for moment tensor components. The correct time solution should be: $F_x = 0$; $F_y =$ 6640; $F_z = 0$; $M_{xx} = 1$; $M_{yy} = 1$; $M_{zz} = 1$; $M_{xy} = 0$; $M_{yz} = 0$.

665

Figure <u>110</u>. Explosion recorded on 14th February, 2005 at 21.40. On the left, the original waveform (top panel), spectrogram (middle panel) and filtered (0.8-2 Hz) waveform
(bottom panel) are shown. The black rectangle highlights the portion of the signal for which we performed the moment tensor inversion.

671	Figure <u>1211</u> . Moment tensor component plus single forces solution (left panel) and	
672	moment tensor components solution (right panel) obtained using a 40 second long source	
673	time function (see text for details). The top right panel shows the original source time	
674	function of 40 s. The black rectangle highlights the portion of the source used in the	
675	inversion.	
676		
677	Figure <u>1312</u> . Calculated (red line) and observed seismogram (blue line) are compared for	
678	the waveform inversion of the explosion that occurred on the 14 th February 2005 at 21.40	
679	(amplitude expressed in 10^{-4} m).	
680		
681	Figure 1413. Moment tensor component plus single forces solution (left panel) and	
682	moment tensor components solution (right panel) obtained by waveform inversion of the	
683	explosion that occurred on the 14 th February 2005 at 21.40.	
684		
685	Table 1. The values of the misfit (R) obtained for the synthetic tests and for the inversion	
686	of the explosive event that occurred on the 14 th of February 2005, are listed for <u>both</u>	
687	moment tensor components-only, -solutions and moment tensor components plus single	
688	forces solution <u>s</u> .	
689		

Moment Tensor Components plus Single Forces

Figure 11 Click here to download high resolution image

Test n.	Description	S/N	Inverted components	Misfit (R)
1	data contaminated with random noise	10	MT	0.092
		10	MT + SF	0.086
2	data contaminated with random noise	2	MT	0.252
		2	MT + SF	0.226
3	data contaminated with random noise for a pure volumetric source geometry	10	MT	0.099
		10	MT + SF	0.083
4	data contaminated with random noise for a vertical crack source geometry	10	MT	0.103
		10	MT + SF	0.088
5	data contaminated with random noise for a mislocated source position	10	MT	0.097
		10	MT + SF	0.093
6	40 s long source time function		MT	0.092
			MT + SF	0.049
7	Explosion Feb 14th, 2005		MT	0.567
			MT + SF	0.418