Article Dans Une Revue Nonlinear Analysis: Real World Applications Année : 2025

Well-posedness of the growth-coagulation equation with singular kernels

Ankik Kumar Giri
  • Fonction : Auteur
  • PersonId : 1073218
Philippe Laurençot
Saroj Si

Résumé

The well-posedness of the growth-coagulation equation is established for coagulation kernels having singularity near the origin and growing atmost linearly at infinity. The existence of weak solutions is shown by means of the method of the characteristics and a weak $L^1$-compactness argument. For the existence result, we also show our gratitude to Banach fixed point theorem and a refined version of the Arzel\'{a}-Ascoli theorem. In addition, the continuous dependence of solutions upon the initial data is shown with the help of the DiPerna-Lions theory, Gronwall's inequality and moment estimates. Moreover, the uniqueness of solution follows from the continuous dependence. The results presented in this article extend the contributions made in earlier literature.
Fichier principal
Vignette du fichier
AKG_PhL_SS-01-08-2024.pdf (277.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04667199 , version 1 (03-08-2024)

Identifiants

Citer

Ankik Kumar Giri, Philippe Laurençot, Saroj Si. Well-posedness of the growth-coagulation equation with singular kernels. Nonlinear Analysis: Real World Applications, 2025, 84, pp.104300. ⟨10.1016/j.nonrwa.2024.104300⟩. ⟨hal-04667199⟩
49 Consultations
19 Téléchargements

Altmetric

Partager

More