Article Dans Une Revue Journal of Differential Equations Année : 2025

Global existence and boundedness of solutions to a fully parabolic chemotaxis system with indirect signal production in $\mathbb{R}^4$

Tatsuya Hosono
  • Fonction : Auteur
  • PersonId : 1369713
Philippe Laurençot

Résumé

Global existence and boundedness of solutions to the Cauchy problem for the four dimensional fully parabolic chemotaxis system with indirect signal production are studied. We prove that solutions with initial mass below $(8\pi)^2$ exist globally in time. This value $(8\pi)^2$ is known as the four dimensional threshold value of the initial mass determining whether blow-up of solutions occurs or not. Furthermore, some condition on the initial mass guaranteeing that the solution remains uniformly bounded is also obtained.
Fichier principal
Vignette du fichier
Completed_paper_Hosono_Laurencot_20241106.pdf (330.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04527586 , version 1 (30-03-2024)
hal-04527586 , version 2 (21-11-2024)

Identifiants

Citer

Tatsuya Hosono, Philippe Laurençot. Global existence and boundedness of solutions to a fully parabolic chemotaxis system with indirect signal production in $\mathbb{R}^4$. Journal of Differential Equations, 2025, 416, pp.2085--2133. ⟨10.1016/j.jde.2024.10.035⟩. ⟨hal-04527586v2⟩
18 Consultations
30 Téléchargements

Altmetric

Partager

More